
www.ijcait.com International Journal of Computer Applications & Information Technology
 Vol. II, Issue I, January 2013 (ISSN: 2278-7720)

P a g e | 9

Survey of Performance based Transmission Control

Protocol in MANET

Sapna Bagde
1

Department of Information Technology
Barkatullah University Institute of Technology

Bhopal, M.P., India.

Prof. Poonam Sinha
Department of Information Technology

Barkatullah University Institute of Technology

Bhopal, (M.P.), India

Asst. Prof. Ashish Jain

Department of Information Technology

Barkatullah University Institute of Technology

Bhopal, (M.P.), India

Abstract: Transmission Control Protocol (TCP) is a

connection-oriented transport service that ensures the

reliability of message delivery. It verifies that messages

and data were received. TCP provides reliable, ordered

delivery of a stream of bytes from a program on one

computer to another program on another

computer. TCP provides a communication service at an

intermediate level between an application programs.

TCP is the protocol used by major Internet applications

such as the World Wide Web, email, remote

administration and file transfer. TCP is a reliable
transport protocol that is well tuned to perform well in

traditional networks. However, several experiments

and analysis have shown that this protocol is not

suitable for bulk data transfer in high bandwidth, large

round trip time networks because of its slow start and

conservative congestion control mechanism. In this

paper we discussed a survey of Performance Based

Transmission Control Protocol in Mobile Ad-hoc

Network environment. The performance based

techniques are categorized based upon different

approaches like throughput, end-to-end delay,
congestion control etc. We also analysis the major

improvement in recent methods for performance based

TCP in MANET.

Keywords: MANET, TCP Techniques, Performances
Analysis.

Introduction

Ad hoc networks are complex distributed systems that

consist of wireless mobile or static nodes that can freely

and dynamically self-organize. In this way they form

arbitrary and temporary ad-hoc network topologies,

allowing devices to seamlessly interconnect in areas

with no pre-existing infrastructure. Depending on
whether the wireless nodes are mobile or static, an ad

hoc network is called a Mobile Ad hoc Network

(MANET). TCP was designed to work in wired

networks and because of that its performance is quite

poor when it is required to work in the typically loss

wireless environment. Unlike cellular networks, where

only the last hop is based on a wireless medium, ad hoc

networks are composed exclusively of wireless links,

where multihop connections may be in place. Besides,

in an ad hoc scenario all nodes can move freely and

unpredictably, which makes the TCP congestion control

quite hard since it is a clock based mechanism.

Consequently, the error-detection and error-recovery

strategies inherent in standard TCP need to be adapted
in order to fit this environment. In particular, since the

errors in this environment occurs not only due to

congestion but also due to medium constraints and

mobility, TCP needs to distinguish the nature of the

error so that it can take the most appropriate action for

each case. Additionally, the emerging link and network

layer algorithms for this kind of network can play a key

role on TCP performance. Likewise, factors such as

path asymmetry (that may also be caused by lower

layers strategies, among other elements) and congestion

window size might also impair the performance of this
protocol. Although there are a number of differences

between cellular and ad hoc networks, some of the ideas

developed in some proposed solutions for the former

can be used in the latter as well. In ad hoc environment

TCP can be led to persist mode whenever a long

disconnection occurs and under wireless medium

induced losses it can simply retransmit the lost packet

instead of invoking its congestion control mechanism.

Both ideas have already been evaluated for cellular

networks where only the last hop is of concern. Ad hoc

networks pose some tough challenges to TCP due to the

fact that it was not designed to operate in such a highly
dynamic scenario in terms of topology. In reality, even

though TCP has evolved significantly over the years

toward a robust and reliable service protocol, the focus

has been primarily on wired networks. In this scenario,

the additive-increase/multiplicative decrease strategies

http://en.wikipedia.org/wiki/World_Wide_Web
http://en.wikipedia.org/wiki/Email

www.ijcait.com International Journal of Computer Applications & Information Technology
 Vol. II, Issue I, January 2013 (ISSN: 2278-7720)

P a g e | 10

coupled with the fast recovery and fast retransmit

mechanisms inherent in most of current TCP versions,

provide an effective congestion control at the end nodes

[1-6]. In recent years, several schemes have been

proposed for satellite as well as for cellular wireless
networks, but much has still to be done on mobile ad

hoc framework. In this sense, it is quite important the

knowledge of both the main factors affection TCP

performance in such an environment and the actual

potentiality of the recent existing proposed solutions,

which are addressed in this paper.

Background on TCP

TCP techniques adjust the network congestion

avoidance parameters of TCP connections over high-

bandwidth, high-latency networks. Well-tuned networks

can perform up to 10 times faster in some
cases. However, blindly following instructions with

understanding their real consequences can hurt the

performance as well.

TCP Bandwidth-delay product (BDP):

Bandwidth-delay product (BDP) is a term primarily

used in conjunction with the TCP to refer to the number

of bytes necessary to fill a TCP "path", i.e. it is equal to
the maximum number of simultaneous bits in transit

between the transmitter and the receiver.

High performance networks have very large BDPs. To

give a practical example, two nodes communicating

over a geostationary satellite link with a round trip

delay of 0.5 seconds and a bandwidth of 10 Gbit/s can

have up to 0.5×1010 bits, i.e., 5 Gbit = 625 MB of

unacknowledged data in flight. Despite having much

lower latencies than satellite links, even terrestrial fiber

links can have very high BDPs because their link

capacity is so large. Operating systems and protocols

designed as recently as a few years ago when networks
were slower were tuned for BDPs of orders of

magnitude smaller, with implications for limited

achievable performance.

TCP Buffers:

The original TCP configurations supported buffers of

up to 64 Kbytes (64 KB), which was adequate for slow

links or links with small round trip times (RTTs).

Larger buffers are required by the high performance

options described below.

Buffering is used throughout high performance network

systems to handle delays in the system. In general,
buffer size will need to be scaled proportional to the

amount of data "in flight" at any time. For very high

performance applications that are not sensitive to

network delays, it is possible to interpose large end to

end buffering delays by putting in intermediate data

storage points in an end to end system, and then to use

automated and scheduled non-real-time data transfers to

get the data to their final endpoints [3] and [7].

Transmission Control Protocol Working Phases:

TCP protocol operations may be divided into three

phases. Connections must be properly established in a

multi-step handshake process (connection

establishment) before entering the data transfer phase.
After data transmission is completed, the connection

termination closes established virtual circuits and

releases all allocated resources.

A TCP connection is managed by an operating system

through a programming interface that represents the

local end-point for communications, the Internet socket.

During the lifetime of a TCP connection it undergoes a

series of state changes:

LISTENING: In case of a server, waiting for a
connection request from any remote client.

SYN-SENT: waiting for the remote peer to send back
a TCP segment with the SYN and ACK flags set.

('SYN-SENT' state is usually set by TCP clients)

SYN-RECEIVED: waiting for the remote peer to
send back an acknowledgment after having sent back a

connection acknowledgment to the remote peer. ('SYN-

RECEIVED' state is usually set by TCP servers)

ESTABLISHED: The port is ready to receive/send
data from/to the remote peer.

FIN-WAIT-1: Indicated that the server is waiting for
the application process on its end to signal that it is

ready to close.

FIN-WAIT-2: Indicates that the client is waiting for
the server's fin segment (which indicates the server's

application process is ready to close and the server is

ready to initiate its side of the connection termination)

CLOSE-WAIT: The server receives notice from the
local application that it is done. The server sends its fin

to the client.

LAST-ACK: Indicates that the server is in the

process of sending its own fin segment (which indicates
the server's application process is ready to close and the

server is ready to initiate its side of the connection

termination).

TIME-WAIT: Represents waiting for enough time to
pass to be sure the remote peer received the

acknowledgment of its connection termination request.

According to RFC 793 a connection can stay in TIME-

WAIT for a maximum of four minutes known as a MSL

(maximum segment lifetime).

CLOSED: Connection is closed.

http://en.wikipedia.org/wiki/Network_congestion_avoidance
http://en.wikipedia.org/wiki/Network_congestion_avoidance
http://en.wikipedia.org/wiki/Network_congestion_avoidance
http://en.wikipedia.org/wiki/Transmission_Control_Protocol
http://en.wikipedia.org/wiki/Transmission_control_protocol
http://en.wikipedia.org/wiki/Megabyte
http://en.wikipedia.org/wiki/Buffer_(computer_science)
http://en.wikipedia.org/wiki/Internet_socket
http://en.wikipedia.org/wiki/State_(computer_science)
http://tools.ietf.org/html/rfc793

www.ijcait.com International Journal of Computer Applications & Information Technology
 Vol. II, Issue I, January 2013 (ISSN: 2278-7720)

P a g e | 11

TCP Connection establishment:

To establish a connection, TCP uses a three-

way handshake. Before a client attempts to connect

with a server, the server must first bind to a port to open

it up for connections: this is called a passive open. Once
the passive open is established, a client may initiate an

active open. To establish a connection, the three-way

(or 3-step) handshake occurs:

1. SYN: The active open is performed by the
client sending a SYN to the server. The client

sets the segment's sequence number to a

random value A.

2. SYN-ACK: In response, the server replies

with a SYN-ACK. The acknowledgment

number is set to one more than the received

sequence number (A + 1), and the sequence

number that the server chooses for the packet

is another random number, B.

3. ACK: Finally, the client sends an ACK back

to the server. The sequence number is set to
the received acknowledgement value i.e. A +

1, and the acknowledgement number is set to

one more than the received sequence number

i.e. B + 1.

At this point, both the client and server have received

an acknowledgment of the connection [6-8].

TCP Connection termination:

The connection termination phase uses, at most, a four-

way handshake, with each side of the connection

terminating independently. When an endpoint wishes to

stop its half of the connection, it transmits a FIN packet,

which the other end acknowledges with an ACK.
Therefore, a typical tear-down requires a pair of FIN

and ACK segments from each TCP endpoint. After both

FIN/ACK exchanges are concluded, the terminating

side waits for a timeout before finally closing the

connection, during which time the local port is

unavailable for new connections; this prevents

confusion due to delayed packets being delivered

during subsequent connections.

A connection can be "half-open", in which case one

side has terminated its end, but the other has not. The

side that has terminated can no longer send any data
into the connection, but the other side can. The

terminating side should continue reading the data until

the other side terminates as well.

It is also possible to terminate the connection by a 3-

way handshake, when host A sends a FIN and host B

replies with a FIN & ACK (merely combines 2 steps

into one) and host A replies with an ACK. This is

perhaps the most common method.

It is possible for both hosts to send FINs simultaneously

then both just have to ACK. This could possibly be

considered a 2-way handshake since the FIN/ACK

sequence is done in parallel for both directions.

Some host TCP stacks may implement a half-duplex

close sequence, as Linux or HP-UX do. If such a host

actively closes a connection but still has not read all the
incoming data the stack already received from the link,

this host sends a RST instead of a FIN. This allows a

TCP application to be sure the remote application has

read all the data the former sent—waiting the FIN from

the remote side, when it actively closes the connection.

However, the remote TCP stack cannot distinguish

between a Connection Aborting RST and this Data Loss

RST. Both cause the remote stack to throw away all the

data it received, but that the application still didn't read.

Some application protocols may violate the OSI model

layers, using the TCP open/close handshaking for the

application protocol open/close handshaking; these may
find the RST problem on active close.

For a usual program flow like above, a TCP/IP stack

like that described above does not guarantee that all the

data arrives to the other application.

TCP Resource usage:

Most implementations allocate an entry in a table that

maps a session to a running operating system process.

Because TCP packets do not include a session

identifier, both endpoints identify the session using the

client's address and port. Whenever a packet is received,

the TCP implementation must perform a lookup on this
table to find the destination process.

The number of sessions in the server side is limited only

by memory and can grow as new connections arrive,

but the client must allocate a random port before

sending the first SYN to the server. This port remains

allocated during the whole conversation, and effectively

limits the number of outgoing connections from each of

the client's IP addresses. If an application fails to

properly close unrequited connections, a client can run

out of resources and become unable to establish new

TCP connections, even from other applications.

Both endpoints must also allocate space for

unacknowledged packets and received (but unread)

data.

TCP Data transfer

There are a few key features that set TCP apart

from User Datagram Protocol:

Ordered data transfer — the destination host
rearranges according to sequence number.

Retransmission of lost packets — any cumulative
stream not acknowledged is retransmitted.

Error-free data transfer.

http://en.wikipedia.org/wiki/Handshaking
http://en.wikipedia.org/wiki/Handshake_(computing)
http://en.wikipedia.org/wiki/TCP_half-open
http://en.wikipedia.org/wiki/Linux
http://en.wikipedia.org/wiki/HP-UX
http://en.wikipedia.org/wiki/OSI_model
http://en.wikipedia.org/wiki/OSI_model
http://en.wikipedia.org/wiki/OSI_model
http://en.wikipedia.org/wiki/User_Datagram_Protocol

www.ijcait.com International Journal of Computer Applications & Information Technology
 Vol. II, Issue I, January 2013 (ISSN: 2278-7720)

P a g e | 12

Flow control — limits the rate a sender transfers data
to guarantee reliable delivery. The receiver continually

hints the sender on how much data can be received

(controlled by the sliding window). When the receiving

host's buffer fills, the next acknowledgment contains a 0
in the window size, to stop transfer and allow the data

in the buffer to be processed.

Congestion Control

TCP Reliable transmission

TCP uses a sequence number to identify each byte of

data. The sequence number identifies the order of the

bytes sent from each computer so that the data can be

reconstructed in order, regardless of any fragmentation,

disordering, or packet loss that may occur during

transmission. For every payload byte transmitted, the

sequence number must be incremented. In the first two

steps of the 3-way handshake, both computers exchange

an initial sequence number (ISN). This number can be

arbitrary, and should in fact be unpredictable to defend

against TCP Sequence Prediction Attacks. TCP
primarily uses a cumulative acknowledgment scheme,

where the receiver sends an acknowledgment signifying

that the receiver has received all data preceding the

acknowledged sequence number. The sender sets the

sequence number field to the sequence number of the

first payload byte in the segment's data field, and the

receiver sends an acknowledgment specifying the

sequence number of the next byte they expect to receive

[1] and [3] and [5].

Performances Analysis of TCP Techniques

M. Jehan, Dr. G.Radhamani & T.Kalakumari et. al.

analyzed six TCP Congestion Control Algorithms and

their performance on Mobile Ad-hoc Networks

(MANET). More specifically, we describe the

performance behavior of BIC, Cubic, TCP Compound,

Vegas, Reno and Westwood congestion control

algorithms. The evaluation is simulated through

Network Simulator (NS2) and the performance of these

congestion control algorithms is analyzed with suitable
metrics. The proposed simulations has been

successfully implemented and evaluated using NS-2

simulator on a computer with Intel Core 2 Duo CPU

(T6400 processor @ 2.00 GHz) 2 GB of RAM. A

random wireless mobile ad hoc network topology was

used for these experiments. They appraised the

performance of these congestion control algorithms in

very ideal condition without any cross traffic and any

additional flows. In this small MANET scenario, the

algorithm BIC (Binary Increase Congestion Control)

provided good throughput after 75 seconds but
algorithm Vegas provided stable and excellent

throughput almost all over on the whole run time. So it

move towards to the wrapping up that the algorithm

Vegas will be the suitable algorithm for small and

dynamic mobile ad hoc network scenario. Except

Vegas, all other assessed algorithms provided very poor

throughput during initial stage of the communication

(less than 50 Seconds). They conclude TCP Vegas will

be the best algorithm from the list.

In this work, they preferred six algorithms for

evaluation, because they are default algorithms in
several standard operating systems.

This work could extend in select few algorithms from

each of these four categories and will evaluate their

performance in MANET scenario. There are other

varying network parameters and metrics that the authors

are working on the same. Based on the results, it needs

to be extending the further enhancement towards

specific application on MANETs [1].

M.Jehan et. al. analyzed the TCP BIC and TCP Vegas

congestion control algorithms and the performance of

these algorithms through NS2 simulator with proper

parameters. The tremendous growth of wireless
networks demands the need to meet different

congestion control algorithms for wireless network.

Usual transmission control protocol reduces its

performance by misinterpreting mobility losses due to

node motion as congestion losses in wireless mobility

network. The term network load is used to describe how

much data will be transmitted over a connection with in

the time duration. It is a gross measurement, taking the

total amount of data transferred in a given period of

time as a rate, without taking into consideration the

quality of the signal itself. The ratio of the number of
packets transmitted and the quantity of packets

delivered to destination node within the time period.

They successfully evaluated the TCP BIC and TCP

Vegas congestion control algorithms using NS2

simulation tool. The performance of these two

algorithms analyzed in ideal condition without any

cross traffic and any other additional flows. In this

small MANET scenario, the algorithm BIC provided

good throughput after 75 seconds but algorithm Vegas

provided stable and excellent result almost all over on

the whole run time.
This work is not sufficient reliable on performance on

TCP congestion control. It could be improving the work

evaluation with based on the as slow start and

Congestion Avoidance [2].

Marco Di Felice et. al. proposed a new paradigm to

provide additional spectrum utilization opportunities in

wireless ad hoc networks. Recent research in this field

has mainly focused on devising spectrum sensing and

sharing algorithms, to allow an opportunistic usage of

licensed portions of the spectrum by Cognitive Radio

Users. However, it is also important to consider the

impact of such schemes on the higher layers of the
protocol stack, in order to provide efficient end-to-end

data delivery. Since TCP is the de facto transport

protocol standard on Internet, it is crucial to estimate its

ability in providing stable end-to-end communication

over Cognitive Radio Ad Hoc Networks. The

contributions of this paper are twofold. First, they

proposed an extension of the NS-2 simulator to support

realistic simulation of CRAHNs. The extension allows

http://en.wikipedia.org/wiki/Packet_loss
http://en.wikipedia.org/wiki/TCP_Sequence_Prediction_Attack

www.ijcait.com International Journal of Computer Applications & Information Technology
 Vol. II, Issue I, January 2013 (ISSN: 2278-7720)

P a g e | 13

modeling the activities of Primary Users (PUs), and the

opportunistic spectrum management by CRUs in the

licensed band. Second, it provided an accurate

simulation analysis of the TCP performance over

CRAHNs, by considering the impact of three factors: (i)
spectrum sensing cycle, (ii) interference from PUs and

(iii) channel heterogeneity.

They investigated the performance of different TCP

variants over CRAHNs, i.e. TCP Reno, TCP New

Reno, TCP with Selective Acknowledgment (TCP

SACK) and TCP Vegas. The CRAHN environment is

constructed. They assume that 5 PU (Primary Users)

spectrum bands are present (i.e. B=5). Moreover, we

assume that the number of CRU channels is equal to the

number of primary bands (i.e. n=1), i.e. there is

complete overlapping between CRU channels and PU

spectrum bands. This assumption makes easier to
investigate the impact of PUs interference on CRUs

using the same spectrum band. Individual spectrum

bands are occupied randomly and independently of each

other by PUs, according to the ON/OFF model.

In the first case, the network is composed of 2 CRUs. A

TCP/FTP connection is established between the static

CRUs. No mobility effect is considered at this stage.

They studied the performance of TCP under different

CRAHNs characteristics, e.g. the sensing time interval

of CRUs, interference caused by PUs activity and

bandwidth variation in an heterogeneous channel
environment. The choice of the single-hop scenario can

be motivated firstly, the single-hop scenario is simple

enough to understand the impact of CRAHNs

characteristics on the dynamics inside the TCP, while

this might be difficult to investigate in multi-hop

topologies. Second, the single-hop topology constitutes

a ―base case‖, from the point of view of protocol

performance. If we discover that a single parameter, e.g.

the sensing time interval, has a strong impact on TCP

performance, then this effect would be emphasized in a

multi-hop environment by the presence of multiple
intermediate nodes between the source and the

destination pair. Moreover, although very simple, the

single-hop topology constitutes a realistic model for the

evaluation of infrastructure-based CR networks, where

the mobile CRUs are attached to a fixed Cognitive Base

Station (CBU). In the second scenario, they considered

multihop CRAHNs topologies, composed of 25 mobile

CRUs. It varied the number of active TCP/FTP

connections. The multi-hop scenario is used to evaluate

end-to-end TCP performance when all the CRAHNs

characteristics are considered.

In this paper, they addressed performance evaluation of
TCP over Cognitive Radio Ad Hoc Networks

(CRAHNs). To this aim, we presented an extension of

the NS-2 tool for the modeling and simulation of

CRAHNs. Their extension provides accurate modeling

of PUs activities and of CRUs spectrum management

functionalities, including spectrum sensing, decision

and mobility schemes. Moreover, it provides facilities

to support cross-layer information sharing among

network protocols at different layers of the protocol

stack.

Simulation results show that sensing time interval and

type of PU activity play a critical role in deciding the

TCP performance.
The simulation results highlight that transport protocols

proposed for traditional wireless ad hoc networks might

not work well communication over Cognitive Radio Ad

Hoc Networks. Since transport layer is still an explored

research area for Cognitive Radio Ad Hoc Networks

(CRAHNs), studying and understanding problems of

classical TCPs in the cognitive environment is

fundamental to design novel transport protocol

solutions for Cognitive Radio Ad-hoc Networks [3].

Jian Liu et. al. presented an approach where they

implemented a thin layer between Internet protocol and

standard TCP that corrects these problems and
maintains high end-to-end TCP throughput. The

protocol in Free BSD, and in this paper, we present

results from extensive experimentation done in an ad

hoc network. The solution improves TCPs throughput

by a factor of 2–3. The goal in designing ATCP (Ad-

hoc TCP) was to provide a complete solution to the

problem of running TCP over multihop wireless

networks. Specifically, they wanted to design a protocol

that has the following characteristics.

1) Improve TCP Performance for Connections set up in

ad-hoc Wireless Networks. TCP performance is
affected by the problems of high BER and

disconnections due to route re-computation or partition.

In each of these cases, the TCP sender mistakenly

invokes congestion control. The appropriate behavior in

these cases ought to be the following.

 High BER: Simply retransmit lost packets without

shrinking the congestion window.

 Delays due to Route Re-computation: Sender should

stop transmitting and resume when a new route has

been found.

Transient Partition: As above, the sender should stop
transmitting (because they did not want to flood the

network with packets that cannot be delivered anyway)

until it is reconnected to the receiver.

Multipath Routing: In this case, when TCP at the

sender receives duplicate ACKs, it should not invoke

congestion control because multipath routing shuffles

the order in which packets are received.

2) Maintain TCP’s Congestion Control Behavior. This

is an important goal because if losses are caused due to

network congestion, they did not want the TCP sender

to assume that these losses were due to high BER and

continue transmitting. In this case, they want TCP to
shrink its congestion window in response to losses and

invoke slow start.

3) Appropriate CWND Behavior. When there is a

change in the route (e.g., a reconnection after a brief

partition), the congestion window should be

recomputed.

www.ijcait.com International Journal of Computer Applications & Information Technology
 Vol. II, Issue I, January 2013 (ISSN: 2278-7720)

P a g e | 14

4) Maintain End-to-End TCP Semantics. It believe that

it is critical to maintain end-to-end TCP semantics in

order to ensure that applications do not crash.

5) Be Compatible with Standard TCP. This is necessary

because we cannot assume that all machines deployed
in an ad hoc network have ATCP installed. Thus,

machines with or without ATCP should be able to set

up normal TCP connections with machines that may or

may not have ATCP.

Furthermore, applications running at machines with

ATCP Should not are aware of ATCP’s presence.

Sometimes, it is likely that an ad hoc network may be

connected to wire line networks through access points.

In such situations, the sender or receiver of a TCP

connection may lie in the wire line network with the

other end-point in the ad hoc network. It is important to

ensure that TCP connections work normally in these
cases as well. The approach to the problem of

improving TCP’s performance while maintaining

compatibility is to introduce a thin layer between TCP

and IP called ATCP. In this paper, they presented a

solution to the problem of running TCP in ad hoc

wireless networks. The solution is to implement a thin

layer between IP and ad-hoc TCP (called ATCP) that

ensures correct TCP behavior while maintaining high

throughput.

This is done by putting TCP into persist mode when the

network is disconnected or when there are losses due to
high bit error.

The Ad-hoc TCP’s performance is need to improve as

measured by the time to transfer large files. And also

need to maintain end to end delay in ATCP congestion

control behavior when there is network congestion [4].

Gavin Holland et. al. investigated the effects that link

breakage due to mobility has on TCP performance.

Through simulation, they showed that TCP throughput

drops significantly when nodes move, due to TCP’s

inability to recognize the difference between link failure

and congestion. They also analyzed specific examples,
such as a situation where throughput is zero for a

particular connection. It introduce a new metric,

expected throughput, for the comparison of throughput

in multi-hop networks, and then use this metric to show

how the use of explicit link failure notification (ELFN)

techniques can significantly improve TCP performance.

In this performance analysis, they set up a single TCP-

Reno connection between a chosen pair of sender and

receiver nodes and measured the throughput over the

lifetime of the connection.

They use throughput as the performance metric in this

paper. The TCP throughput is usually less than
―optimal‖ due to the TCP sender’s inability to

accurately determine the cause of a packet loss. The

TCP sender assumes that all packet losses are caused by

congestion. Thus, when a link on a TCP route breaks,

the TCP sender reacts as if congestion was the cause,

reducing its congestion window and, in the instance of a

timeout, backing-off its retransmission timeout (RTO).

Therefore, route changes due to host mobility can have

a detrimental impact on TCP performance. To gauge

the impact of route changes on TCP performance, they

derived an upper bound on TCP throughput, called the

expected throughput. The TCP throughput measure

obtained by simulation is then compared with the
expected throughput.

They obtained the expected throughput as follows. We

first simulated a static (fixed) network of n nodes that

formed a linear chain containing n − 1 wireless hops.

The nodes used the 802.11 MAC protocol for medium

access. Then, a one-way TCP data transfer was

performed between the two nodes at the ends of the

linear chain, and the TCP throughput was measured

between these nodes. This set of TCP throughput

measurements is analogous to that performed using

similar (but not identical) MAC protocols.

This paper, investigated the effects of mobility on TCP
performance in mobile ad hoc networks. Through

simulation, noted that TCP throughput drops

significantly when node movement causes link failures,

due to TCP’s inability to recognize the difference

between link failure and congestion. Then they made

this point clearer by presenting several specific

examples, one of which resulted in zero throughput, the

other, in an unexpected rise in throughput with an

increase

in speed. We also introduced a new metric, expected

throughput, which provides a more accurate means of
performance comparison by accounting for the

differences in throughput when the number of hops

varies. We then used this metric to show how the use of

explicit link failure notification (ELFN) can

significantly improve TCP performance, and gave a

performance comparison of a variety of potential ELFN

protocols. In the process, they discovered some

surprising effects that route caching can have on TCP

performance.

This work need intend to investigate ELFN protocols in

more detail, as well as the effects that other mobile ad
hoc routing protocols have on TCP performance. Also

more research is needed to better understand the

complex interactions between TCP and lower layer

protocols when used over mobile ad hoc networks, and

to find solutions to the problems caused by these

interactions [5].

Martin Kohlwes et. al. reported the results from a long

series of various measurements on the behavior of TCP

over a UMTS wireless channel performed in two

different UTMS networks. They conclude that at least

in good conditions TCP throughput is close to
theoretical maximum, and that RTT is fairly stable.

Practically no packet losses were detected, and spurious

retransmissions were extremely rare. No performance

benefit was observed when TCP retransmission timer

modifications, such as the Eifel and FRTO algorithms

were used.

Two types of TCP connections were used in the

measurements. First, connections between two UEs

www.ijcait.com International Journal of Computer Applications & Information Technology
 Vol. II, Issue I, January 2013 (ISSN: 2278-7720)

P a g e | 15

were used. While this is an interesting case to study,

most of the TCP traffic will probably be related to

accessing services in the fixed network. Thus, the bulk

of the measurements were performed in a scenario,

where a dedicated Linux-based server, running multiple
TCP-based services was contacted from a client running

on a laptop connected to the UE. To study the behavior

of the TCP state machine in more detail, small

modifications to the Linux kernel were done, enabling

the logging of various internal variables, such as the

congestion window size, the threshold value, and so on.

In addition to this data, TCP dump was used to obtain

packet traces for further analysis during all

measurements.

The control mechanism measurements were carried out

UMTS offered a stable data channel for TCP to operate

in. High packet loss rates and highly varying RTT
commonly attributed to wireless channels were not

observed. Thus, UMTS certainly has the potential to

offer high-speed internet connectivity using standard

protocols and settings. Whether this potential continues

to be realized in commercial networks in the future is an

interesting question. In the measurements, no other

users were to our knowledge present in the network.

Due to the design of the UMTS system, these

conclusions should also hold for networks used by not a

single, but a small group of users. The commercial

realities, on the other hand, make it unlikely that these
expensive networks run with only a few users per cell.

It is unclear what takes place when networks become

truly crowded [6].

Conclusion and Future Works

The Transmission Control Protocol (TCP) was designed

to provide reliable end-to-end delivery of data over
unreliable networks. In practice, most TCP deployments

have been carefully designed in the context of wired

networks. Ignoring the properties of wireless ad-hoc

Networks can lead to TCP implementations with poor

performance. In order to adapt TCP to the ad hoc

environment, improvements have been proposed in the

literature to help TCP to differentiate between the

different types of losses. Indeed, in mobile or static ad

hoc networks losses are not always due to network

congestion, as it is the case in wired networks or

wireless networks. After survey the techniques on TCP
we conclude that the causes of TCP performance

degradation in MANETs are due to many major

problems. These problems are TCP is unable to

distinguish between losses due to route failures and

network congestion; TCP suffers from frequent route

failures, End to End delay, and throughput. During the

survey, we also find some points that can be further

explored in the future using advanced technique in

feature extraction method and will improve the

performance of TCP technique to achieve more

efficient accuracy in network congestion, throughput

and reduce the end to end delay time.

After surveying different techniques we define the Advantages and Disadvantages of techniques in the table:

Techniques Advantages/ Merits Disadvantages /Future Improvement

Direction

TCP Congestion Control
Algorithms, BIC, Cubic,
Compound, Vegas, Reno,

Westwood.

The performance of these congestion
control algorithms in very ideal condition
without any cross traffic and any additional
flows.

This work could extend in select few
algorithms from each of these four categories
and will evaluate their performance in MANET
scenario. There are other varying network
parameters and metrics that the authors are

working on the same. Based on the results, it
needs to be extending the further enhancement
towards specific application on MANETs [1].

TCP Congestion Control

Algorithms, MANET, BIC,
Vegas

The performance of these algorithms
analyzed in ideal condition without any
cross traffic and any other additional flows.
In this small MANET scenario, the

algorithm BIC provided good throughput
after 75 seconds but algorithm Vegas
provided stable and excellent result almost
all over on the whole run time.

This work is not sufficient reliable on
performance on TCP congestion control. It
could be improving the work evaluation with
based on the as slow start and Congestion

Avoidance [2].

Spectrum Management,
Transmission Control Protocol

It provides facilities to support cross-layer
information sharing among network
protocols at different layers of the protocol
stack.
Simulation results show that sensing time
interval and type of PU activity play a

critical role in deciding the TCP

The simulation results highlight that transport
protocols proposed for traditional wireless ad
hoc networks might not work well
communication over Cognitive Radio Ad Hoc
Networks. Since transport layer is still an
explored research area for Cognitive Radio Ad

Hoc Networks (CRAHNs), studying and

www.ijcait.com International Journal of Computer Applications & Information Technology
 Vol. II, Issue I, January 2013 (ISSN: 2278-7720)

P a g e | 16

performance.

understanding problems of classical TCPs in
the cognitive environment is fundamental to
design novel transport protocol solutions for
Cognitive Radio Ad-hoc Networks [3].

 Ad-hoc TCP algorithm

It presented a solution to the problem of
running TCP in ad hoc wireless networks.
The solution is to implement a thin layer
between IP and ad-hoc TCP (called ATCP)
that ensures correct TCP behavior while
maintaining high throughput.

The Ad-hoc TCP’s performance is need to
improve as measured by the time to transfer
large files. And also need to maintain end to
end delay in ATCP congestion control behavior
when there is network congestion [4].

Explicit feedback algorithm,
TCP Reno

The use of explicit link failure notification
(ELFN) can significantly improve TCP
performance, and gave a performance
comparison of a variety of potential ELFN
protocols. In the process, they discovered
some surprising effects that route caching

can have on TCP performance.

This work need intend to investigate ELFN
protocols in more detail, as well as the effects
that other mobile ad hoc routing protocols have
on TCP performance. Also more research is
needed to better understand the complex
interactions between TCP and lower layer

protocols when used over mobile ad hoc
networks, and to find solutions to the problems
caused by these interactions [5].

TCP, FRTO algorithm

To study the behavior of the TCP state
machine in more detail, small modifications
to the Linux kernel were done, enabling the

logging of various internal variables, such
as the congestion window size, the
threshold value, and so on. TCP throughput
is close to theoretical maximum, and that
RTT is fairly stable. Practically no packet
losses were detected, and spurious
retransmissions were extremely rare.

It is unclear what takes place when networks
become truly crowded [6].

References

[1] M.Jehan, Dr.G.Radhamani, and T.Kalakumari,

―VEGAS: Better Performance than Other TCP

Congestion Control Algorithms on MANETs‖,

International Journal of Computer Networks (IJCN),

Volume (3): Issue (2): 2011, pp. 151-158.

[2] M.Jehan, G.Radhamani, and T.Kalakumari,

―Experimental Evaluation of TCP BIC and Vegas in

MANETs‖, International Journal of Computer

Applications (0975 – 8887) Volume 16– No.1,
February 2011, pp. 34-38.

[3] Marco Di Felice, Kaushik Roy Chowdhury, and

Luciano Bononi, ―Modeling and Performance

Evaluation of Transmission Control Protocol over

Cognitive Radio Ad Hoc Networks‖, MSWiM’09,

October 26–29, 2009, Tenerife, Canary Islands,

Spain.Copyright 2009 ACM 978-1-60558-616-8/09/10,

pp. 4-9.

[4] Jian Liu, and Suresh Singh,‖ ATCP: TCP for
Mobile Ad Hoc Networks‖, IEEE JOURNAL ON

SELECTED AREAS IN COMMUNICATIONS, VOL.

19, NO. 7, JULY 2001, 1300-1315.

[5] GAVIN HOLLAND, and NITIN VAIDYA,

―Analysis of TCP Performance over Mobile Ad Hoc

Networks‖, Wireless Networks 8, 275–288, 2002,

Kluwer Academic Publishers. Manufactured in

Netherlands, pp. 275-278.

[6] Martin Kohlwes and Janne Riihiarvi and Petri
Mahonen, ―Measurements of TCP Performance over

UMTS Networks in Near-Ideal Conditions‖, IEEE

2005.

[7] K. Chandran, S. Raghunathan, S. Venkatesan, and

R. Prakash, ―A feedback based scheme for improving

TCP performance in ad hoc wireless networks,‖ in Proc.

18th Int. Conf. Distributed Computing Systems,

Amsterdam, The Netherlands, May 26–29, 1998, pp.

474–479.

[8] S. Floyd, ―TCP and explicit congestion

notification,‖ ACM Compute Communication. Rev.,

vol. 24, no. 5, Oct. 1994, pp. 10-23

