
www.ijcait.com                                   International Journal of Computer Applications & Information Technology 
                                                                                                                 Vol. II, Issue I, January 2013 (ISSN: 2278-7720) 

 

P a g e | 9                                                     
 

Survey of Performance based Transmission Control 

Protocol in MANET 

Sapna Bagde
1
 

Department of Information Technology 
Barkatullah University Institute of Technology 

Bhopal, M.P., India. 

Prof. Poonam Sinha 
Department of Information Technology 

Barkatullah University Institute of Technology 

Bhopal, (M.P.), India 

Asst. Prof. Ashish Jain 

Department of Information Technology 

Barkatullah University Institute of Technology 

Bhopal, (M.P.), India 

 

 
Abstract: Transmission Control Protocol (TCP) is a 

connection-oriented transport service that ensures the 

reliability of message delivery. It verifies that messages 

and data were received. TCP provides reliable, ordered 

delivery of a stream of bytes from a program on one 

computer to another program on another 

computer.  TCP provides a communication service at an 

intermediate level between an application programs. 

TCP is the protocol used by major Internet applications 

such as the World Wide Web, email, remote 

administration and file transfer. TCP is a reliable 
transport protocol that is well tuned to perform well in 

traditional networks.  However, several experiments 

and analysis have shown that this protocol is not 

suitable for bulk data transfer in high bandwidth, large 

round trip time networks because of its slow start and 

conservative congestion control mechanism. In this 

paper we discussed a survey of Performance Based 

Transmission Control Protocol in Mobile Ad-hoc 

Network environment. The performance based 

techniques are categorized based upon different 

approaches like throughput, end-to-end delay, 
congestion control etc. We also analysis the major 

improvement in recent methods for performance based 

TCP in MANET. 

Keywords: MANET, TCP Techniques, Performances 
Analysis.  

Introduction 

Ad hoc networks are complex distributed systems that 

consist of wireless mobile or static nodes that can freely 

and dynamically self-organize. In this way they form 

arbitrary and temporary ad-hoc network topologies, 

allowing devices to seamlessly interconnect in areas 

with no pre-existing infrastructure. Depending on 
whether the wireless nodes are mobile or static, an ad 

hoc network is called a Mobile Ad hoc Network 

(MANET). TCP was designed to work in wired 

networks and because of that its performance is quite 

poor when it is required to work in the typically loss 

wireless environment. Unlike cellular networks, where 

only the last hop is based on a wireless medium, ad hoc 

networks are composed exclusively of wireless links, 

where multihop connections may be in place. Besides, 

in an ad hoc scenario all nodes can move freely and 

unpredictably, which makes the TCP congestion control 

quite hard since it is a clock based mechanism. 

Consequently, the error-detection and error-recovery 

strategies inherent in standard TCP need to be adapted 
in order to fit this environment. In particular, since the 

errors in this environment occurs not only due to 

congestion but also due to medium constraints and 

mobility, TCP needs to distinguish the nature of the 

error so that it can take the most appropriate action for 

each case. Additionally, the emerging link and network 

layer algorithms for this kind of network can play a key 

role on TCP performance. Likewise, factors such as 

path asymmetry (that may also be caused by lower 

layers strategies, among other elements) and congestion 

window size might also impair the performance of this 
protocol. Although there are a number of differences 

between cellular and ad hoc networks, some of the ideas 

developed in some proposed solutions for the former 

can be used in the latter as well. In ad hoc environment 

TCP can be led to persist mode whenever a long 

disconnection occurs and under wireless medium 

induced losses it can simply retransmit the lost packet 

instead of invoking its congestion control mechanism. 

Both ideas have already been evaluated for cellular 

networks where only the last hop is of concern. Ad hoc 

networks pose some tough challenges to TCP due to the 

fact that it was not designed to operate in such a highly 
dynamic scenario in terms of topology. In reality, even 

though TCP has evolved significantly over the years 

toward a robust and reliable service protocol, the focus 

has been primarily on wired networks. In this scenario, 

the additive-increase/multiplicative decrease   strategies 

http://en.wikipedia.org/wiki/World_Wide_Web
http://en.wikipedia.org/wiki/Email
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coupled with the fast recovery and fast retransmit 

mechanisms inherent in most of current TCP versions, 

provide an effective congestion control at the end nodes 

[1-6].  In recent years, several schemes have been 

proposed for satellite as well as for cellular wireless 
networks, but much has still to be done on mobile ad 

hoc framework. In this sense, it is quite important the 

knowledge of both the main factors affection TCP 

performance in such an environment and the actual 

potentiality of the recent existing proposed solutions, 

which are addressed in this paper. 

Background on TCP 

TCP techniques adjust the network congestion 

avoidance parameters of TCP connections over high-

bandwidth, high-latency networks. Well-tuned networks 

can perform up to 10 times faster in some 
cases. However, blindly following instructions with 

understanding their real consequences can hurt the 

performance as well. 

TCP Bandwidth-delay product (BDP): 

Bandwidth-delay product (BDP) is a term primarily 

used in conjunction with the TCP to refer to the number 

of bytes necessary to fill a TCP "path", i.e. it is equal to 
the maximum number of simultaneous bits in transit 

between the transmitter and the receiver. 

High performance networks have very large BDPs. To 

give a practical example, two nodes communicating 

over a geostationary satellite link with a round trip 

delay of 0.5 seconds and a bandwidth of 10 Gbit/s can 

have up to 0.5×1010 bits, i.e., 5 Gbit = 625 MB of 

unacknowledged data in flight. Despite having much 

lower latencies than satellite links, even terrestrial fiber 

links can have very high BDPs because their link 

capacity is so large. Operating systems and protocols 

designed as recently as a few years ago when networks 
were slower were tuned for BDPs of orders of 

magnitude smaller, with implications for limited 

achievable performance. 

TCP Buffers: 

The original TCP configurations supported buffers of 

up to 64 Kbytes (64 KB), which was adequate for slow 

links or links with small round trip times (RTTs). 

Larger buffers are required by the high performance 

options described below. 

Buffering is used throughout high performance network 

systems to handle delays in the system. In general, 
buffer size will need to be scaled proportional to the 

amount of data "in flight" at any time. For very high 

performance applications that are not sensitive to 

network delays, it is possible to interpose large end to 

end buffering delays by putting in intermediate data 

storage points in an end to end system, and then to use 

automated and scheduled non-real-time data transfers to 

get the data to their final endpoints [3] and [7]. 

Transmission Control Protocol Working Phases: 

TCP protocol operations may be divided into three 

phases. Connections must be properly established in a 

multi-step handshake process (connection 

establishment) before entering the data transfer phase. 
After data transmission is completed, the connection 

termination closes established virtual circuits and 

releases all allocated resources. 

A TCP connection is managed by an operating system 

through a programming interface that represents the 

local end-point for communications, the Internet socket. 

During the lifetime of a TCP connection it undergoes a 

series of state changes:  

LISTENING: In case of a server, waiting for a 
connection request from any remote client. 

SYN-SENT: waiting for the remote peer to send back 
a TCP segment with the SYN and ACK flags set. 

('SYN-SENT' state is usually set by TCP clients) 

SYN-RECEIVED: waiting for the remote peer to 
send back an acknowledgment after having sent back a 

connection acknowledgment to the remote peer. ('SYN-

RECEIVED' state is usually set by TCP servers) 

ESTABLISHED: The port is ready to receive/send 
data from/to the remote peer. 

FIN-WAIT-1: Indicated that the server is waiting for 
the application process on its end to signal that it is 

ready to close. 

FIN-WAIT-2: Indicates that the client is waiting for 
the server's fin segment (which indicates the server's 

application process is ready to close and the server is 

ready to initiate its side of the connection termination) 

CLOSE-WAIT: The server receives notice from the 
local application that it is done. The server sends its fin 

to the client. 

LAST-ACK: Indicates that the server is in the 

process of sending its own fin segment (which indicates 
the server's application process is ready to close and the 

server is ready to initiate its side of the connection 

termination). 

TIME-WAIT: Represents waiting for enough time to 
pass to be sure the remote peer received the 

acknowledgment of its connection termination request. 

According to RFC 793 a connection can stay in TIME-

WAIT for a maximum of four minutes known as a MSL 

(maximum segment lifetime). 

CLOSED: Connection is closed. 

http://en.wikipedia.org/wiki/Network_congestion_avoidance
http://en.wikipedia.org/wiki/Network_congestion_avoidance
http://en.wikipedia.org/wiki/Network_congestion_avoidance
http://en.wikipedia.org/wiki/Transmission_Control_Protocol
http://en.wikipedia.org/wiki/Transmission_control_protocol
http://en.wikipedia.org/wiki/Megabyte
http://en.wikipedia.org/wiki/Buffer_(computer_science)
http://en.wikipedia.org/wiki/Internet_socket
http://en.wikipedia.org/wiki/State_(computer_science)
http://tools.ietf.org/html/rfc793
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TCP Connection establishment: 

To establish a connection, TCP uses a three-

way handshake. Before a client attempts to connect 

with a server, the server must first bind to a port to open 

it up for connections: this is called a passive open. Once 
the passive open is established, a client may initiate an 

active open. To establish a connection, the three-way 

(or 3-step) handshake occurs: 

1. SYN: The active open is performed by the 
client sending a SYN to the server. The client 

sets the segment's sequence number to a 

random value A. 

2. SYN-ACK: In response, the server replies 

with a SYN-ACK. The acknowledgment 

number is set to one more than the received 

sequence number (A + 1), and the sequence 

number that the server chooses for the packet 

is another random number, B. 

3. ACK: Finally, the client sends an ACK back 

to the server. The sequence number is set to 
the received acknowledgement value i.e. A + 

1, and the acknowledgement number is set to 

one more than the received sequence number 

i.e. B + 1. 

At this point, both the client and server have received 

an acknowledgment of the connection [6-8]. 

TCP Connection termination: 

The connection termination phase uses, at most, a four-

way handshake, with each side of the connection 

terminating independently. When an endpoint wishes to 

stop its half of the connection, it transmits a FIN packet, 

which the other end acknowledges with an ACK. 
Therefore, a typical tear-down requires a pair of FIN 

and ACK segments from each TCP endpoint. After both 

FIN/ACK exchanges are concluded, the terminating 

side waits for a timeout before finally closing the 

connection, during which time the local port is 

unavailable for new connections; this prevents 

confusion due to delayed packets being delivered 

during subsequent connections. 

A connection can be "half-open", in which case one 

side has terminated its end, but the other has not. The 

side that has terminated can no longer send any data 
into the connection, but the other side can. The 

terminating side should continue reading the data until 

the other side terminates as well. 

It is also possible to terminate the connection by a 3-

way handshake, when host A sends a FIN and host B 

replies with a FIN & ACK (merely combines 2 steps 

into one) and host A replies with an ACK. This is 

perhaps the most common method. 

It is possible for both hosts to send FINs simultaneously 

then both just have to ACK. This could possibly be 

considered a 2-way handshake since the FIN/ACK 

sequence is done in parallel for both directions. 

Some host TCP stacks may implement a half-duplex 

close sequence, as Linux or HP-UX do. If such a host 

actively closes a connection but still has not read all the 
incoming data the stack already received from the link, 

this host sends a RST instead of a FIN. This allows a 

TCP application to be sure the remote application has 

read all the data the former sent—waiting the FIN from 

the remote side, when it actively closes the connection. 

However, the remote TCP stack cannot distinguish 

between a Connection Aborting RST and this Data Loss 

RST. Both cause the remote stack to throw away all the 

data it received, but that the application still didn't read.  

Some application protocols may violate the OSI model 

layers, using the TCP open/close handshaking for the 

application protocol open/close handshaking; these may 
find the RST problem on active close. 

For a usual program flow like above, a TCP/IP stack 

like that described above does not guarantee that all the 

data arrives to the other application. 

TCP Resource usage: 

Most implementations allocate an entry in a table that 

maps a session to a running operating system process. 

Because TCP packets do not include a session 

identifier, both endpoints identify the session using the 

client's address and port. Whenever a packet is received, 

the TCP implementation must perform a lookup on this 
table to find the destination process. 

The number of sessions in the server side is limited only 

by memory and can grow as new connections arrive, 

but the client must allocate a random port before 

sending the first SYN to the server. This port remains 

allocated during the whole conversation, and effectively 

limits the number of outgoing connections from each of 

the client's IP addresses. If an application fails to 

properly close unrequited connections, a client can run 

out of resources and become unable to establish new 

TCP connections, even from other applications. 

Both endpoints must also allocate space for 

unacknowledged packets and received (but unread) 

data. 

TCP Data transfer 

There are a few key features that set TCP apart 

from User Datagram Protocol: 

Ordered data transfer — the destination host 
rearranges according to sequence number. 

Retransmission of lost packets — any cumulative 
stream not acknowledged is retransmitted. 

Error-free data transfer. 

http://en.wikipedia.org/wiki/Handshaking
http://en.wikipedia.org/wiki/Handshake_(computing)
http://en.wikipedia.org/wiki/TCP_half-open
http://en.wikipedia.org/wiki/Linux
http://en.wikipedia.org/wiki/HP-UX
http://en.wikipedia.org/wiki/OSI_model
http://en.wikipedia.org/wiki/OSI_model
http://en.wikipedia.org/wiki/OSI_model
http://en.wikipedia.org/wiki/User_Datagram_Protocol
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Flow control — limits the rate a sender transfers data 
to guarantee reliable delivery. The receiver continually 

hints the sender on how much data can be received 

(controlled by the sliding window). When the receiving 

host's buffer fills, the next acknowledgment contains a 0 
in the window size, to stop transfer and allow the data 

in the buffer to be processed.  

Congestion Control 

TCP Reliable transmission 

TCP uses a sequence number to identify each byte of 

data. The sequence number identifies the order of the 

bytes sent from each computer so that the data can be 

reconstructed in order, regardless of any fragmentation, 

disordering, or packet loss that may occur during 

transmission. For every payload byte transmitted, the 

sequence number must be incremented. In the first two 

steps of the 3-way handshake, both computers exchange 

an initial sequence number (ISN). This number can be 

arbitrary, and should in fact be unpredictable to defend 

against TCP Sequence Prediction Attacks. TCP 
primarily uses a cumulative acknowledgment scheme, 

where the receiver sends an acknowledgment signifying 

that the receiver has received all data preceding the 

acknowledged sequence number. The sender sets the 

sequence number field to the sequence number of the 

first payload byte in the segment's data field, and the 

receiver sends an acknowledgment specifying the 

sequence number of the next byte they expect to receive 

[1] and [3] and [5]. 

Performances Analysis of TCP Techniques 

M. Jehan, Dr. G.Radhamani & T.Kalakumari et. al. 

analyzed six TCP Congestion Control Algorithms and 

their performance on Mobile Ad-hoc Networks 

(MANET). More specifically, we describe the 

performance behavior of BIC, Cubic, TCP Compound, 

Vegas, Reno and Westwood congestion control 

algorithms. The evaluation is simulated through 

Network Simulator (NS2) and the performance of these 

congestion control algorithms is analyzed with suitable 
metrics. The proposed simulations has been 

successfully implemented and evaluated using NS-2 

simulator on a computer with Intel Core 2 Duo CPU 

(T6400 processor @ 2.00 GHz) 2 GB of RAM. A 

random wireless mobile ad hoc network topology was 

used for these experiments.  They appraised the 

performance of these congestion control algorithms in 

very ideal condition without any cross traffic and any 

additional flows. In this small MANET scenario, the 

algorithm BIC (Binary Increase Congestion Control) 

provided good throughput after 75 seconds but 
algorithm Vegas provided stable and excellent 

throughput almost all over on the whole run time. So it 

move towards to the wrapping up that the algorithm 

Vegas will be the suitable algorithm for small and 

dynamic mobile ad hoc network scenario. Except 

Vegas, all other assessed algorithms provided very poor 

throughput during initial stage of the communication 

(less than 50 Seconds). They conclude TCP Vegas will 

be the best algorithm from the list. 

In this work, they preferred six algorithms for 

evaluation, because they are default algorithms in 
several standard operating systems.  

This work could extend in select few algorithms from 

each of these four categories and will evaluate their 

performance in MANET scenario. There are other 

varying network parameters and metrics that the authors 

are working on the same. Based on the results, it needs 

to be extending the further enhancement towards 

specific application on MANETs [1]. 

M.Jehan et. al. analyzed the TCP BIC and TCP Vegas 

congestion control algorithms and the performance of 

these algorithms through NS2 simulator with proper 

parameters. The tremendous growth of wireless 
networks demands the need to meet different 

congestion control algorithms for wireless network. 

Usual transmission control protocol reduces its 

performance by misinterpreting mobility losses due to 

node motion as congestion losses in wireless mobility 

network. The term network load is used to describe how 

much data will be transmitted over a connection with in 

the time duration. It is a gross measurement, taking the 

total amount of data transferred in a given period of 

time as a rate, without taking into consideration the 

quality of the signal itself. The ratio of the number of 
packets transmitted and the quantity of packets 

delivered to destination node within the time period.  

They successfully evaluated the TCP BIC and TCP 

Vegas congestion control algorithms using NS2 

simulation tool. The performance of these two 

algorithms analyzed in ideal condition without any 

cross traffic and any other additional flows. In this 

small MANET scenario, the algorithm BIC provided 

good throughput after 75 seconds but algorithm Vegas 

provided stable and excellent result almost all over on 

the whole run time. 
This work is not sufficient reliable on performance on 

TCP congestion control. It could be improving the work 

evaluation with based on the as slow start and 

Congestion Avoidance [2]. 

Marco Di Felice et. al. proposed a new paradigm to 

provide additional spectrum utilization opportunities in 

wireless ad hoc networks. Recent research in this field 

has mainly focused on devising spectrum sensing and 

sharing algorithms, to allow an opportunistic usage of 

licensed portions of the spectrum by Cognitive Radio 

Users. However, it is also important to consider the 

impact of such schemes on the higher layers of the 
protocol stack, in order to provide efficient end-to-end 

data delivery. Since TCP is the de facto transport 

protocol standard on Internet, it is crucial to estimate its 

ability in providing stable end-to-end communication 

over Cognitive Radio Ad Hoc Networks. The 

contributions of this paper are twofold. First, they 

proposed an extension of the NS-2 simulator to support 

realistic simulation of CRAHNs. The extension allows 

http://en.wikipedia.org/wiki/Packet_loss
http://en.wikipedia.org/wiki/TCP_Sequence_Prediction_Attack
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modeling the activities of Primary Users (PUs), and the 

opportunistic spectrum management by CRUs in the 

licensed band. Second, it provided an accurate 

simulation analysis of the TCP performance over 

CRAHNs, by considering the impact of three factors: (i) 
spectrum sensing cycle, (ii) interference from PUs and 

(iii) channel heterogeneity.  

They investigated the performance of different TCP 

variants over CRAHNs, i.e. TCP Reno, TCP New 

Reno, TCP with Selective Acknowledgment (TCP 

SACK) and TCP Vegas. The CRAHN environment is 

constructed. They assume that 5 PU (Primary Users) 

spectrum bands are present (i.e. B=5). Moreover, we 

assume that the number of CRU channels is equal to the 

number of primary bands (i.e. n=1), i.e. there is 

complete overlapping between CRU channels and PU 

spectrum bands. This assumption makes easier to 
investigate the impact of PUs interference on CRUs 

using the same spectrum band. Individual spectrum 

bands are occupied randomly and independently of each 

other by PUs, according to the ON/OFF model.  

In the first case, the network is composed of 2 CRUs. A 

TCP/FTP connection is established between the static 

CRUs. No mobility effect is considered at this stage. 

They studied the performance of TCP under different 

CRAHNs characteristics, e.g. the sensing time interval 

of CRUs, interference caused by PUs activity and 

bandwidth variation in an heterogeneous channel 
environment. The choice of the single-hop scenario can 

be motivated firstly, the single-hop scenario is simple 

enough to understand the impact of CRAHNs 

characteristics on the dynamics inside the TCP, while 

this might be difficult to investigate in multi-hop 

topologies. Second, the single-hop topology constitutes 

a ―base case‖, from the point of view of protocol 

performance. If we discover that a single parameter, e.g. 

the sensing time interval, has a strong impact on TCP 

performance, then this effect would be emphasized in a 

multi-hop environment by the presence of multiple 
intermediate nodes between the source and the 

destination pair. Moreover, although very simple, the 

single-hop topology constitutes a realistic model for the 

evaluation of infrastructure-based CR networks, where 

the mobile CRUs are attached to a fixed Cognitive Base 

Station (CBU). In the second scenario, they considered 

multihop CRAHNs topologies, composed of 25 mobile 

CRUs. It varied the number of active TCP/FTP 

connections. The multi-hop scenario is used to evaluate 

end-to-end TCP performance when all the CRAHNs 

characteristics are considered. 

In this paper, they addressed performance evaluation of 
TCP over Cognitive Radio Ad Hoc Networks 

(CRAHNs). To this aim, we presented an extension of 

the NS-2 tool for the modeling and simulation of 

CRAHNs. Their extension provides accurate modeling 

of PUs activities and of CRUs spectrum management 

functionalities, including spectrum sensing, decision 

and mobility schemes. Moreover, it provides facilities 

to support cross-layer information sharing among 

network protocols at different layers of the protocol 

stack. 

Simulation results show that sensing time interval and 

type of PU activity play a critical role in deciding the 

TCP performance.  
The simulation results highlight that transport protocols 

proposed for traditional wireless ad hoc networks might 

not work well communication over Cognitive Radio Ad 

Hoc Networks. Since transport layer is still an explored 

research area for Cognitive Radio Ad Hoc Networks 

(CRAHNs), studying and understanding problems of 

classical TCPs in the cognitive environment is 

fundamental to design novel transport protocol 

solutions for Cognitive Radio Ad-hoc Networks [3]. 

Jian Liu et. al. presented an approach where they 

implemented a thin layer between Internet protocol and 

standard TCP that corrects these problems and 
maintains high end-to-end TCP throughput.  The 

protocol in Free BSD, and in this paper, we present 

results from extensive experimentation done in an ad 

hoc network. The solution improves TCPs throughput 

by a factor of 2–3. The goal in designing ATCP (Ad-

hoc TCP) was to provide a complete solution to the 

problem of running TCP over multihop wireless 

networks. Specifically, they wanted to design a protocol 

that has the following characteristics. 

1) Improve TCP Performance for Connections set up in 

ad-hoc Wireless Networks. TCP performance is 
affected by the problems of high BER and 

disconnections due to route re-computation or partition. 

In each of these cases, the TCP sender mistakenly 

invokes congestion control. The appropriate behavior in 

these cases ought to be the following. 

 High BER: Simply retransmit lost packets without 

shrinking the congestion window. 

 Delays due to Route Re-computation: Sender should 

stop transmitting and resume when a new route has 

been found. 

Transient Partition: As above, the sender should stop 
transmitting (because they did not want to flood the 

network with packets that cannot be delivered anyway) 

until it is reconnected to the receiver. 

Multipath Routing: In this case, when TCP at the 

sender receives duplicate ACKs, it should not invoke 

congestion control because multipath routing shuffles 

the order in which packets are received. 

2) Maintain TCP’s Congestion Control Behavior. This 

is an important goal because if losses are caused due to 

network congestion, they did not want the TCP sender 

to assume that these losses were due to high BER and 

continue transmitting. In this case, they want TCP to 
shrink its congestion window in response to losses and 

invoke slow start. 

3) Appropriate CWND Behavior. When there is a 

change in the route (e.g., a reconnection after a brief 

partition), the congestion window should be 

recomputed.  
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4) Maintain End-to-End TCP Semantics. It believe that 

it is critical to maintain end-to-end TCP semantics in 

order to ensure that applications do not crash. 

5) Be Compatible with Standard TCP. This is necessary 

because we cannot assume that all machines deployed 
in an ad hoc network have ATCP installed. Thus, 

machines with or without ATCP should be able to set 

up normal TCP connections with machines that may or 

may not have ATCP. 

Furthermore, applications running at machines with 

ATCP Should not are aware of ATCP’s presence. 

Sometimes, it is likely that an ad hoc network may be 

connected to wire line networks through access points. 

In such situations, the sender or receiver of a TCP 

connection may lie in the wire line network with the 

other end-point in the ad hoc network. It is important to 

ensure that TCP connections work normally in these 
cases as well. The approach to the problem of 

improving TCP’s performance while maintaining 

compatibility is to introduce a thin layer between TCP 

and IP called ATCP. In this paper, they presented a 

solution to the problem of running TCP in ad hoc 

wireless networks. The solution is to implement a thin 

layer between IP and ad-hoc TCP (called ATCP) that 

ensures correct TCP behavior while maintaining high 

throughput.  

This is done by putting TCP into persist mode when the 

network is disconnected or when there are losses due to 
high bit error. 

The Ad-hoc TCP’s performance is need to improve as 

measured by the time to transfer large files. And also 

need to maintain end to end delay in ATCP congestion 

control behavior when there is network congestion [4]. 

Gavin Holland et. al. investigated the effects that link 

breakage due to mobility has on TCP performance. 

Through simulation, they showed that TCP throughput 

drops significantly when nodes move, due to TCP’s 

inability to recognize the difference between link failure 

and congestion. They also analyzed specific examples, 
such as a situation where throughput is zero for a 

particular connection. It introduce a new metric, 

expected throughput, for the comparison of throughput 

in multi-hop networks, and then use this metric to show 

how the use of explicit link failure notification (ELFN) 

techniques can significantly improve TCP performance. 

In this performance analysis, they set up a single TCP-

Reno connection between a chosen pair of sender and 

receiver nodes and measured the throughput over the 

lifetime of the connection. 

They use throughput as the performance metric in this 

paper. The TCP throughput is usually less than 
―optimal‖ due to the TCP sender’s inability to 

accurately determine the cause of a packet loss. The 

TCP sender assumes that all packet losses are caused by 

congestion. Thus, when a link on a TCP route breaks, 

the TCP sender reacts as if congestion was the cause, 

reducing its congestion window and, in the instance of a 

timeout, backing-off its retransmission timeout (RTO). 

Therefore, route changes due to host mobility can have 

a detrimental impact on TCP performance. To gauge 

the impact of route changes on TCP performance, they 

derived an upper bound on TCP throughput, called the 

expected throughput. The TCP throughput measure 

obtained by simulation is then compared with the 
expected throughput. 

They obtained the expected throughput as follows. We 

first simulated a static (fixed) network of n nodes that 

formed a linear chain containing n − 1 wireless hops. 

The nodes used the 802.11 MAC protocol for medium 

access. Then, a one-way TCP data transfer was 

performed between the two nodes at the ends of the 

linear chain, and the TCP throughput was measured 

between these nodes. This set of TCP throughput 

measurements is analogous to that performed using 

similar (but not identical) MAC protocols. 

This paper, investigated the effects of mobility on TCP 
performance in mobile ad hoc networks. Through 

simulation, noted that TCP throughput drops 

significantly when node movement causes link failures, 

due to TCP’s inability to recognize the difference 

between link failure and congestion. Then they made 

this point clearer by presenting several specific 

examples, one of which resulted in zero throughput, the 

other, in an unexpected rise in throughput with an 

increase 

in speed. We also introduced a new metric, expected 

throughput, which provides a more accurate means of 
performance comparison by accounting for the 

differences in throughput when the number of hops 

varies. We then used this metric to show how the use of 

explicit link failure notification (ELFN) can 

significantly improve TCP performance, and gave a 

performance comparison of a variety of potential ELFN 

protocols. In the process, they discovered some 

surprising effects that route caching can have on TCP 

performance. 

This work need intend to investigate ELFN protocols in 

more detail, as well as the effects that other mobile ad 
hoc routing protocols have on TCP performance. Also 

more research is needed to better understand the 

complex interactions between TCP and lower layer 

protocols when used over mobile ad hoc networks, and 

to find solutions to the problems caused by these 

interactions [5]. 

 

Martin Kohlwes et. al. reported the results from a long 

series of various measurements on the behavior of TCP 

over a UMTS wireless channel performed in two 

different UTMS networks. They conclude that at least 

in good conditions TCP throughput is close to 
theoretical maximum, and that RTT is fairly stable. 

Practically no packet losses were detected, and spurious 

retransmissions were extremely rare. No performance 

benefit was observed when TCP retransmission timer 

modifications, such as the Eifel and FRTO algorithms 

were used. 

Two types of TCP connections were used in the 

measurements. First, connections between two UEs 
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were used. While this is an interesting case to study, 

most of the TCP traffic will probably be related to 

accessing services in the fixed network. Thus, the bulk 

of the measurements were performed in a scenario, 

where a dedicated Linux-based server, running multiple 
TCP-based services was contacted from a client running 

on a laptop connected to the UE. To study the behavior 

of the TCP state machine in more detail, small 

modifications to the Linux kernel were done, enabling 

the logging of various internal variables, such as the 

congestion window size, the threshold value, and so on. 

In addition to this data, TCP dump was used to obtain 

packet traces for further analysis during all 

measurements.  

The control mechanism measurements were carried out 

UMTS offered a stable data channel for TCP to operate 

in. High packet loss rates and highly varying RTT 
commonly attributed to wireless channels were not 

observed. Thus, UMTS certainly has the potential to 

offer high-speed internet connectivity using standard 

protocols and settings. Whether this potential continues 

to be realized in commercial networks in the future is an 

interesting question. In the measurements, no other 

users were to our knowledge present in the network. 

Due to the design of the UMTS system, these 

conclusions should also hold for networks used by not a 

single, but a small group of users. The commercial 

realities, on the other hand, make it unlikely that these 
expensive networks run with only a few users per cell. 

It is unclear what takes place when networks become 

truly crowded [6]. 

 

Conclusion and Future Works 

 
The Transmission Control Protocol (TCP) was designed 

to provide reliable end-to-end delivery of data over 
unreliable networks. In practice, most TCP deployments 

have been carefully designed in the context of wired 

networks. Ignoring the properties of wireless ad-hoc 

Networks can lead to TCP implementations with poor 

performance. In order to adapt TCP to the ad hoc 

environment, improvements have been proposed in the 

literature to help TCP to differentiate between the 

different types of losses. Indeed, in mobile or static ad 

hoc networks losses are not always due to network 

congestion, as it is the case in wired networks or 

wireless networks. After survey the techniques on TCP 
we conclude that the causes of TCP performance 

degradation in MANETs are due to many major 

problems. These problems are TCP is unable to 

distinguish between losses due to route failures and 

network congestion; TCP suffers from frequent route 

failures, End to End delay, and throughput. During the 

survey, we also find some points that can be further 

explored in the future using advanced technique in 

feature extraction method and will improve the 

performance of TCP technique to achieve more 

efficient accuracy in network congestion, throughput 

and reduce the end to end delay time. 

  

After surveying different techniques we define the Advantages and Disadvantages of techniques in the table: 

 

Techniques Advantages/ Merits Disadvantages /Future Improvement 

Direction 

 
 

TCP Congestion Control 
Algorithms, BIC, Cubic, 
Compound, Vegas, Reno, 

Westwood. 

The performance of these congestion 
control algorithms in very ideal condition 
without any cross traffic and any additional 
flows. 

This work could extend in select few 
algorithms from each of these four categories 
and will evaluate their performance in MANET 
scenario. There are other varying network 
parameters and metrics that the authors are 

working on the same. Based on the results, it 
needs to be extending the further enhancement 
towards specific application on MANETs [1]. 

 

 
 
 

TCP Congestion Control 

Algorithms, MANET, BIC, 
Vegas 

The performance of these algorithms 
analyzed in ideal condition without any 
cross traffic and any other additional flows. 
In this small MANET scenario, the 

algorithm BIC provided good throughput 
after 75 seconds but algorithm Vegas 
provided stable and excellent result almost 
all over on the whole run time. 
 

This work is not sufficient reliable on 
performance on TCP congestion control. It 
could be improving the work evaluation with 
based on the as slow start and Congestion 

Avoidance [2]. 
 

 
 
 

Spectrum Management, 
Transmission Control Protocol 

It provides facilities to support cross-layer 
information sharing among network 
protocols at different layers of the protocol 
stack. 
Simulation results show that sensing time 
interval and type of PU activity play a 

critical role in deciding the TCP 

The simulation results highlight that transport 
protocols proposed for traditional wireless ad 
hoc networks might not work well 
communication over Cognitive Radio Ad Hoc 
Networks. Since transport layer is still an 
explored research area for Cognitive Radio Ad 

Hoc Networks (CRAHNs), studying and 
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performance.  
 

understanding problems of classical TCPs in 
the cognitive environment is fundamental to 
design novel transport protocol solutions for 
Cognitive Radio Ad-hoc Networks [3]. 

 
 
     
     Ad-hoc TCP algorithm 

It presented a solution to the problem of 
running TCP in ad hoc wireless networks. 
The solution is to implement a thin layer 
between IP and ad-hoc TCP (called ATCP) 
that ensures correct TCP behavior while 
maintaining high throughput.  
 

The Ad-hoc TCP’s performance is need to 
improve as measured by the time to transfer 
large files. And also need to maintain end to 
end delay in ATCP congestion control behavior 
when there is network congestion [4]. 
 
 
 

 
 

 
 
 
 

Explicit feedback algorithm, 
TCP Reno 

The use of explicit link failure notification 
(ELFN) can significantly improve TCP 
performance, and gave a performance 
comparison of a variety of potential ELFN 
protocols. In the process, they discovered 
some surprising effects that route caching 

can have on TCP performance. 
 

This work need intend to investigate ELFN 
protocols in more detail, as well as the effects 
that other mobile ad hoc routing protocols have 
on TCP performance. Also more research is 
needed to better understand the complex 
interactions between TCP and lower layer 

protocols when used over mobile ad hoc 
networks, and to find solutions to the problems 
caused by these interactions [5]. 
 

 
 
 

 
 

TCP, FRTO algorithm 

To study the behavior of the TCP state 
machine in more detail, small modifications 
to the Linux kernel were done, enabling the 

logging of various internal variables, such 
as the congestion window size, the 
threshold value, and so on. TCP throughput 
is close to theoretical maximum, and that 
RTT is fairly stable. Practically no packet 
losses were detected, and spurious 
retransmissions were extremely rare. 

It is unclear what takes place when networks 
become truly crowded [6]. 
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