
www.ijcait.com International Journal of Computer Applications & Information Technology
 Vol. II, Issue I, January 2013 (ISSN: 2278-7720)

P a g e | 31 y

Major Half Served First (MHSF) Disk Scheduling Algorithm
Manish Kumar Mishra

Department of Information Technology
College of Computing and Informatics

Haramaya University, Dire Dawa, Ethiopia

ABSTRACT

I/O performance has been improved by proper scheduling of
disk accesses since the time movable head disk came into
existence. Disk scheduling is the process of carefully
examining the pending requests to determine the most
efficient way to service the pending requests. Scheduling
algorithms generally concentrate on reducing seek times for a
set of requests, because seek times tend to be an order of

magnitude greater than latency times. Some important
scheduling algorithms are First-Come-First-Served (FCFS),
Shortest Seek Time First (SSTF), SCAN, Circular Scan (C-
SCAN) and LOOK. This paper proposes a new disk
scheduling algorithm called Major Half Served First (MHSF).
Simulation results show that using MHSF the service is fast
and seek time has been reduced drastically.

Keywords

Disk Scheduling, Seek Time, Average Seek Time, FCFS,
SSTF, MHSF.

1. INTRODUCTION
In multiprogrammed computing systems, inefficiency is often
caused by improper use of rotational storage devices such as
disk. In this type of system, many processes may be
generating requests for reading and writing disk records.
Sometimes these processes make requests faster than they can
be serviced by the moving head-disks, as a result waiting lines
or queues build up for each device (H. M. Deitel, 2002).
Which process should be selected next for service, is an

important question, because it affects the effectiveness of the
service. The main aim of the disk scheduling algorithms is to
reduce or minimize the seek time for a set of requests (Sourav
et al., 2012). The disk performance can be optimized by
installing a magnetic disk that can result in high transfer rates.
Magnetic disk is a collection of platters. Information is stored
by recording it magnetically on the platters. A read-write disk
head is located on top of each surface of every platter. The

heads are attached to a disk arm that moves all the heads as a
unit. The surface of a platter is logically divided into circular
tracks, which are subdivided into sectors (A. Silberschatz et
al., 2005). A cylinder is made up of set of tracks that are at
one arm position. Disks are currently four orders of magnitude
slower than main memory, so many researches are going on to
enhance the efficiency of disks (William, 2007). Scheduling
algorithms for moving head-disks have been studied for many

years, but which algorithm is “best” is still an open question
(Robert and Stephen, 1987). Most scheduling algorithms in
use today are variations of a few central themes. By reducing
the average seek time we can improve the performance of disk
I/O operation. This study proposed a new algorithm, Major
Half Served First (MHSF), which is an improvement of SSTF.
MHSF takes less average seek time as compare to SSTF and
FCFS disk scheduling algorithms.

1.1 Disk performance parameters
The disk I/O operations mainly depend on the computer
system, the operating system, and the nature of the I/O

channel and disk controller hardware (C. Staelin et al., 2009).
The time taken to position the disk arm at the desired cylinder
is called the Seek Time, and the time for the desired sector to

rotate to the disk head is called the Rotational Latency. The
sum of seek time and rotational latency is known as Access
Time. The transfer time mainly depends on the rotational
speed of the disk. The total number of bytes transferred,
divided by the total time between the first request for service
and the completion of the last transfer is called the disk
Bandwidth (A. Silberschatz et al., 2005). These are the disk
performance parameters and they can be improved by
scheduling the servicing of disk I/O requests in a good order.

1.2 Disk scheduling algorithms
Disk scheduling algorithms are used to allocate the services to
the I/O requests on the disk. Some important scheduling
algorithms are First-Come-First-Served (FCFS), Shortest Seek
Time First (SSTF), SCAN, Circular Scan (C-SCAN) and
LOOK. FCFS is the simplest form of disk scheduling
algorithm. In this scheduling, I/O requests are served as per

their arrival. The request that arrive first, is served first so the
name First-Come-First-Served. In SSTF algorithm, the
request with the minimum seek time from the current head
position is served first. In this algorithm, I/O requests at the
edges of the disk surface may get starved (A. L. N. Reddy et
al., 2005). SSTF gives substantial improvement over FCFS. In
SCAN algorithm, the disk arm starts from one end of the disk
and moves to the other end of the disk. While moving from

one end to the other end of the disk, it serves the requests as it
reaches each cylinder. When it reaches to other end, the
direction of head movement is reversed. SCAN gives better
performance than FCFS and SSTF. In C-SCAN, the disk head
moves from one end to the other end of the disk, serving the
request along the way. When the disk head reaches to the
other end, it immediately returns back to the beginning of the
disk. In return trip, it does not serve any request. The waiting
time increases in C-SCAN (Sourav et al., 2012). In LOOK

algorithm, the arm goes only as far as the final request in each
direction (A. Silberschatz et al., 2005). The direction reverses
immediately, without going all the way to the end of the disk.

1.3 Related work done
In the recent years many researches has been done for

enhancing the disk performance. (Manish, 2012) proposed an
improvement in existing FCFS disk scheduling algorithm
which works similar to FCFS but with a small improvement.
IFCFS move the disk head with the intention to serve the first
I/O request. On the way going to serve the first request, if
there is any request waiting from the current disk head
position to the first request, will be served. (Z. Dimitrijevic et
al., 2005) have presented Semi-preemptible I/O, which

divides disk I/O requests into small temporal units of disk
commands to improve the preemptibility of disk access.
(Cheng - Han et al., 2008) propose a novel real-time disk-
scheduling algorithm called WRR - SCAN (Weighted-Round-
Robin-SCAN) to provide quality guarantees for all in-service
streams encoded at variable bit rates and bounded response

www.ijcait.com International Journal of Computer Applications & Information Technology
 Vol. II, Issue I, January 2013 (ISSN: 2278-7720)

P a g e | 32 y

times for aperiodic jobs. (B. L. Worthington et al., 1994)
examined theimpact of complex logical-to-physical mappings
and large prefetching caches on scheduling effectiveness. (A.
Muqaddas et al., 2009) made a simulator (Disksims). (W. A.
Burkhard and J. D. Palmer, 2002) reduced the required flash

memory by a factor of more than thirty there by reducing the
manufacturing cost per drive.

2. MAJOR HALF SERVEDD FIRST

(MHSF) ALGORITHM
My proposed MHSF algorithm is an improvement of SSTF
disk scheduling algorithm. The aim of MHSF is to improve
the disk performance by reducing average seek time. The

MHSF disk scheduling algorithm checks number of requests
on lower half area and upper half area from the present disk
head position. If number of requests on lower half area is
more than the number of requests on upper half area then first
it serves lower half area requests and then it serves upper half
area requests. If number of requests on upper half area is more
than the number of requests on lower half area then first it
serves upper half area requests and then it serves lower half
area requests. If number of requests on lower half area and

upper half area are equal then MHSF checks the present disk
head position. If disk head is in lower half area then first it
serves lower half area requests then it serves upper half area
requests. If disk head is in upper half area then first it serves
upper half area requests then it serves lower half area
requests. MHSF selects either lower half requests or upper
half requests depend on the number of requests pending on
both areas. MHSF serves the pending requests of selected area

using SSTF algorithm. Means the request that is closer to the
present disk position will be served first in selected area.
Following is the proposed MHSF disk scheduling algorithm

Step 1. START
Step 2. Make a queue of the I/O requests say

REQUEST.
Step 3. Check number of requests on lower half area

and upper half area from the present disk head

position.

Step 4. IF number of requests on lower half area is
more than the number of requests on upper half
area THEN first serve lower half area requests
and then serve upper half area requests
ELSEIF number of requests on upper half area

is more than the number of requests on lower
half area THEN first serve upper half area
requests and then serve lower half area
requests

Step 5. IF number of requests on lower half area and
number of requests on upper half area are equal
THEN check the present disk head position. IF
disk head is in lower half area then first serve

lower half area requests then serve upper half
area requests ELSE first serve upper half area
requests then serve lower half area requests

Step 6. END

3. PERFORMANCE EVALUATION

3.1 Experiments performed
For performance evaluation of my proposed MHSF algorithm,
I have taken three different cases. Six, eight and ten I/O
requests have been taken into consideration in case 1, case 2

and case 3 respectively. In each case, the experimental results
of proposed MHSF algorithm have been compared with SSTF
and FCFS algorithms.

Case 1: The disk queue with request for I/O to blocks on
cylinders 15, 50, 35, 22, 5 and 12 has been taken into

consideration. MHSF checks number of requests on lower
half and upper half from the present disk head position. If disk
head is presently at cylinder 30 then lower half has 4 and
upper half has 2 requests.

MHSF algorithm will serve lower half requests first
and then upper half requests using SSTF since lower half
requests are more than upper half requests. Disk head first
move to cylinder 22 since it is closet from the present disk

head position in lower half. Once disk head is at cylinder 22,
the next closet request is at cylinder 15. After serving request
at cylinder 15, disk head moves to cylinder 12 and then it
serves the last request at cylinder 10 in lower half area. All the
requests in the lower half area have been served.

 Now disk head is ready to serve upper half requests. In upper
half area, first request that is close to the present disk head
position is at cylinder 35. Disk head moves to cylinder 35 then

the next closet request is at cylinder 50. The total head
movement is 70 cylinders. Using the same example request
queue, the total head movement is 80 cylinders in SSTF and
102 cylinders in FCFS. Table 1 shows the comparison of
result of proposed MHSF with SSTF and FCFS algorithms.

Figure 1, Figure 2 and Figure 3 shows the representation of

MHSF, SSTF and FCFS respectively. Figure 4 shows the

comparison of average seek time of MHSF, SSTF and FCFS.

Table 1. Comparison of MHSF, SSTF and FCFS (Case 1)

Algorithms
Total Head

Movement

Average Seek

Time

MHSF 70 11.67

SSTF 80 13.33

FCFS 102 17

Fig 1: Representation of MHSF (Case 1)

0

10

20

30

40

50

60

70

80

90

100

Time

Queue = 15, 50, 35, 22, 5, 12 Head starts at 30

www.ijcait.com International Journal of Computer Applications & Information Technology
 Vol. II, Issue I, January 2013 (ISSN: 2278-7720)

P a g e | 33 y

Fig 2: Representation of SSTF (Case 1)

Fig 3: Representation of FCFS (Case 1)

Fig 4: Comparison of Average Seek Time (Case 1)

Case 2: The disk queue with request for I/O to blocks on

cylinders 50, 10, 90, 75, 100, 80, 65 and 5 has been taken into
consideration. MHSF checks number of requests on lower
half and upper half from the present disk head position. If disk
head is presently at cylinder 55 then lower half has 3 and
upper half has 5 requests. MHSF algorithm will serve upper
half requests first and then lower half requests using SSTF
since upper half requests are more than lower half requests.
Disk head first move to cylinder 65 since it is closet from the
present disk head position in upper half. Once disk head is at

cylinder 65, the next closet request is at cylinder 75. After
serving request at cylinder 75, disk head moves to cylinder 80,
90 and then it serves the last request at cylinder 100 in upper
half area. All the requests in the upper half area have been
served. Now disk head is ready to serve lower half requests.

In lower half area, first request that is close to the present disk
head position is at cylinder 50. Disk head moves to cylinder
50 then the next closet request is at cylinder 10 and finally
request at cylinder 5 is served. The total head movement is
140 cylinders. Using the same example request queue, the

total head movement is 150 cylinders in SSTF and 260
cylinders in FCFS. Table 2 shows the comparison of result of
proposed MHSF with SSTF and FCFS algorithms.

 Figure 5, Figure 6 and Figure 7 shows the representation of
MHSF, SSTF and FCFS respectively. Figure 8 shows the
comparison of average seek time of MHSF, SSTF and FCFS.

Table 2. Comparison of MHSF, SSTF and FCFS (Case 2)

Algorithms
Total Head

Movement

Average Seek

Time

MHSF 140 17.50

SSTF 150 18.75

FCFS 260 32.50

Fig 5: Representation of MHSF (Case 2)

Fig 6: Representation of SSTF (Case 2)

Fig 7: Representation of FCFS (Case 2)

Tr
ac

k

N
u

m
b

er
s

0

10

20

30

40

50

60

70

80

90

100

Time

Queue = 50, 10, 90, 75, 100, 80, 65, 5 Head starts at 55

Tr
ac

k

N
u

m
b

er
s

0

10

20

30

40

50

60

70

80

90

100

Time

Queue = 50, 10, 90, 75, 100, 80, 65, 5 Head starts at 55

Tr
ac

k

N
u

m
b

e
rs

0

10

20

30

40

50

60

70

80

90

100

Time

Queue = 50, 10, 90, 75, 100, 80, 65, 5 Head starts at 55

A
ve

ra
ge

 S
ee

k

Ti
m

e

0

5

10

15

20

25

30

35

40

45

MHSF SSTF FCFS

Queue = 15, 50, 35, 22, 5, 12

Head starts at 30

Tr
ac

k

N
u

m
b

e
rs

0

10

20

30

40

50

60

70

80

90

100

Time

Queue = 15, 50, 35, 22, 5, 12 Head starts at 30

Tr
ac

k

N
u

m
b

er
s

0

10

20

30

40

50

60

70

80

90

100

Time

Queue = 15, 50, 35, 22, 5, 12 Head starts at 30

www.ijcait.com International Journal of Computer Applications & Information Technology
 Vol. II, Issue I, January 2013 (ISSN: 2278-7720)

P a g e | 34 y

Fig 8: Comparison of Average Seek Time (Case 2)

Case 3: The disk queue with request for I/O to blocks on
cylinders 20, 30, 5, 95, 85, 55, 90, 100, 25 and 15 has been
taken into consideration. MHSF checks number of requests on
lower half and upper half from the present disk head position.

If disk head is presently at cylinder 45 then lower half has 5
and upper half has also 5 requests. Since lower half and upper
half have same number of requests, the disk head position will
be check against minimum and maximum track numbers. The
minimum track number is 0 and the maximum track number is
100 on each platter. Since disk head is presently in the lower
half of the track numbers available, MHSF algorithm selects
lower half requests. Disk head first move to cylinder 30 since

it is closet from the present disk head position in lower half.
Once disk head is at cylinder 30, the next closet request is at
cylinder 25. After serving request at cylinder 25, disk head
moves to cylinder 20, 15 and then it serves the last request at
cylinder 5 in lower half area. All the requests in the lower half
area have been served. Now disk head is ready to serve upper
half requests. In upper half area, first request that is close to
the present disk head position is at cylinder 55. Disk head
moves to cylinder 55 then the next closet request is at cylinder

85. After serving request at cylinder 85, disk head moves to
cylinder 90, 95 and finally request at cylinder 100 is served.
The total head movement is 135 cylinders. Using the same
example request queue, the total head movement is 155
cylinders in SSTF and 320 cylinders in FCFS. Table 2 shows
the comparison of result of proposed MHSF with SSTF and
FCFS algorithms.

 Figure 9, Figure 10 and Figure 11 shows the representation of

MHSF, SSTF and FCFS respectively. Figure 12 shows the
comparison of average seek time of MHSF, SSTF and FCFS.

Table 3. Comparison of MHSF, SSTF and FCFS (Case 3)

Algorithms
Total Head

Movement

Average Seek

Time

MHSF 135 13.5

SSTF 155 15.5

FCFS 320 32.0

Fig 9: Representation of MHSF (Case 3)

Fig 10: Representation of SSTF (Case 3)

Fig 11: Representation of FCFS (Case 3)

Tr
ac

k
N

u
m

b
er

s

0

10

20

30

40

50

60

70

80

90

100

Time

Queue = 20, 30, 5, 95, 85, 55, 90, 100, 25, 15

Head starts at 45

Tr
ac

k
N

u
m

b
e

rs

0

10

20

30

40

50

60

70

80

90

100

Time

Queue = 20, 30, 5, 95, 85, 55, 90, 100, 25, 15

Head starts at 45

Tr

ac
k

N
u

m
b

er
s

0

10

20

30

40

50

60

70

80

90

100

Time

Queue = 20, 30, 5, 95, 85, 55, 90, 100, 25, 15

Head starts at 45

A
ve

ra
ge

 S
e

e
k

Ti
m

e

0

5

10

15

20

25

30

35

40

45

MHSF SSTF FCFS

Queue = 50, 10, 90, 75, 100, 80, 65, 5

Head starts at 55

www.ijcait.com International Journal of Computer Applications & Information Technology
 Vol. II, Issue I, January 2013 (ISSN: 2278-7720)

P a g e | 35 y

Fig 12: Comparison of Average Seek Time (Case 3)

4. CONCLUSION
This paper presented a new disk scheduling algorithm.

Experimental results shows that the proposed MHSF disk

scheduling algorithm is giving better performance than SSTF

and FCFS disk scheduling algorithms. The average seek time

has been reduced by this algorithm which increases the

efficiency of the disk performance. This algorithm can be

implemented to improve the performance in real time

systems.

5. REFERENCES
[1] A. L. N. Reddy, Jim Wyllie, K. B. R. Wijayaratne, 2005.

Disk Scheduling in a Multimedia I/O System. ACM
Transactions on Multimedia Computing,
Communications and Applications. Vol. 1, No. 1, 37-59.

[2] A. Muqaddas, H. Abdulsalam, A. Salman, 2009. S-

LOOK: A Preemptive Disk Scheduling Algorithm for
Offline and Online Environments. CSIT, Lviv, Ukraine.
15-17th Oct, 1-4.

[3] A. Silberschatz, P. B. Galvin, G. Gagne, 2005. Operating
System Concepts, seventh ed. John Wiley and Sons Inc,
New Delhi.

[4] B. L. Worthington, G. R. Ganger, Y. N. Patt, 1994.
Scheduling Algorithms for Modern Disk Drives.
Appeared in the Proceedings of the ACM Sigmetrics
Conference. 241-251.

[5] C. Staelin, G. Amir, D. B. Ovadia, R. Dagan, M.
Melamed, D. Staas, 2009. Real-time disk scheduling
algorithm allowing concurrent I/O requests. HP
Laboratories. HPL-344.

[6] C. Tsai, T. Huang, E. Chu, C. Wei, Y. Tsai, 2008. An
Efficient Real-Time Disk-Scheduling Framework with
Adaptive Quality Guarantee. IEEE Transactions on
computers. Vol. 57, No. 5.

[7] H. M. Deitel, 2002. Operating Systems, second ed.
Pearson Education Pte. Ltd., New Delhi.

[8] Manish Kumar Mishra, 2012. An Improved FCFS
(IFCFS) Disk Scheduling Algorithm. International
Journal of Computer Applications. Vol. 47, No. 13, 20-
24.

[9] Robert Geist, Stephen Daniel, 1987. A Continuum of
Disk Scheduling Algorithms. ACM Transactions on
Computer Systems. Vol. 5, No. 1, 77-92.

[10] Sourav Kumar Bhoi, Sanjaya Kumar Panda, Imran
Hossain Faruk, 2012. Design and Performance
Evaluation of an Optimized Disk Scheduling Algorithm
(ODSA). International Journal of Computer
Applications. Vol. 40, No. 11, 28-35.

[11] W. A. Burkhard, J. D. Palmer, 2002. Rotational Position
Optimization (RPO) Disk Scheduling. FAST, Monterey,
California. 28-29th Jan.

[12] William Stallings, 2007. Operating Systems, fourth ed.
Pearson Education Pte. Ltd., New Delhi.

[13] Z. Dimitrijevic, R. Rangaswami, E. Y. Chang, 2005.
Support for Preemptive Disk Scheduling. IEEE
Transactions on computers. Vol. 54, No. 10.

A
ve

ra
ge

 S
e

e
k

Ti
m

e

0

5

10

15

20

25

30

35

40

45

MHSF SSTF FCFS

Queue = 20, 30, 5, 95, 85, 55, 90, 100, 25, 15

Head starts at 45

