
www.ijcait.com International Journal of Computer Applications & Information Technology
 Vol. II, Issue I, January 2013 (ISSN: 2278-7720)

P a g e | 1

Software Security-Static Buffer Overflow Analysis in Object
Oriented Programming Environment- A Comparative Study

 MANAS GAUR RAMESH SINGH
 Computer Science and Engineering Senior Scientist, System Software Division
 Ambedkar Institute of Technology (AIACTR) National Informatics Centre
 DELHI, INDIA DELHI, INDIA

ABSTRACT

Measurement of efficacy and efficiency of software (code) is

one of the most useful and left over exercise in software
development life cycle. Testing software regarding its
capability to withstand attack is a major concern in the ICT
field. There are many threats like threat to information, byte
code error, malfunctioning, injections etc. Many tools have
been created to combat the problem but the work path is not
defined. We survey the research work in this area with the key
interest in Buffer Overflow anomaly, a threat to be considered

very seriously. We lay our research findings on some live
projects in object oriented environment, analyze the test result
of static and dynamic tools and try to improve the result of our
work through code (statement/branch) coverage analysis. We
henceforth attempt an algorithm to provide a checklist of
some hot spot area in the software code. We also design a
taxonomy of the error generated during our testing and
analysis and strengthen the research with conclusion that the

buffer overflow occur due to negligence in the code within the
realm of taxonomy.

Keywords : Buffer overflow taxonomy, tool performance ,

tool comparison ,hash code analysis, types of coverage and
analysis

1. INTRODUCTION

The internet is constantly under attack as witnessed by recent
Blaster and Slammer worms that infected more than 200,000
computers in few hours. Buffer Overflow attack on source
code has a terrific relation to network security firewall.
Though use of NAT router and firewall prevent hostile attack

but when user download the code for use as snippet, malicious
code gets attached, which look alike to normal code but are
bugs and perform a DOS attack? The best appearance of these
bugs are in legacy codes or use in deprecated files. These files
contain link to deprecated libraries, use of these may harm the
reliability of the software[1]. To review the buffer overflow,
approaches have been developed to reduce the buffer
anomaly. These approaches can be at compile time called

static approach or at run time called dynamic approach. Static
approaches are based on source code design and utility. Static
testing of the source code eliminates buffer overflow and are
used in open source software testing, but requires experience
in data flow graph analysis. Many static tools have been
developed and evaluated in past, but still have high false
alarm rate. Tester generally sees a tool as a panacea to
complete bug problem but such wholesome tools don’t exist.

Testing whether static or dynamic calls for regressive analysis
of code through different views. We define both qualitative
and quantitative analysis of the static and dynamic tools and
try to cure the anomaly by using combination of all tools. We
evaluate the output of testing result of one tool and try to
reduce it using other complimentary tools within the realm of

object oriented paradigm. We try to resolve the problem by
using basic software engineering methodology of algorithm
and cyclomatic complexity analysis. We lay our research on
some live projects developed by our team in object oriented
environment and open source application server. We

henceforth define an algorithm to manually check the stability
of the code and provide taxonomy of error that generates the
buffer overflow susceptibility. Our work is based on four
tools, two static, one dynamic and one for data flow analysis,
our work is mainly consolidated on process to reduce false
alarm rate, compare their efficiency and try to achieve above
90 percent coverage in the code so that there is minimal
probability for bugs to reside.

1.1 Literature Survey

There were tremendous work done in past in this field

and were greatly helpful in developing my research.

Experience Using Static Analysis to Find Bugs by david

Hovemeyer, William Pugh, John Penix.2008 This

research develops the find bug tool and shows survey

results of the tool but does not specify 3 subparts to

divide findbugs and quantitative comparison between
findbugs and Pmd and dynamic tools. Analysis Tool

Evaluation-PMD by Allen Hsu, Somakala Jagnathan

Carnegie Mellon University:- This paper present

detailing about the PMD tool, its interface and rule set

primarily qualitative analysis with its pros and cons.

Making FindBugs More Powerful by Asheq Hamid

2011: This paper talk about the different categories of

bug patterns and how buffer overflow analysis can be

detected by analysis one of these patterns..In late 2000

Crispin Cowan published there paper buffer overflow

:Attack and defences for the Vulnerability of the
decade. They implicitly discuss several of our attack

forms but leave out the integer overflow and data

structures overflow. Software Unit Test Coverage and

Adequacy by Zhu Hal :- The paper speaks about the

coverage analysis as a panacea of many coding errors

and bending of the program. Apart from mutation

testing and unit cases it put forward a research on

coverage analysis and branch testing which serves as a

module in modern tools. Defining and Providing

Coverage of Assertion Based Dynamic Verification JG

Tong 2010:- This paper elaborates the relation between

the coverage of the assertion-based specification and
the specific coverage metrics representing the

assertions. Simple Dynamic Assertion For Interactive

Program Validation C Hulten 1984: Its speaks about the

advantages of a simple, user-friendly system based on

dynamic assertions for expressing constraints,

www.ijcait.com International Journal of Computer Applications & Information Technology
 Vol. II, Issue I, January 2013 (ISSN: 2278-7720)

P a g e | 2

transactions, and transition constraints. The study is

merely subjective and less of practical information

about assertion at work. Fade to Grey: Tuning Static

Program Analysis by Ralf Hucck and Michael Tapp

2011: The information discovers the need of tuning
more than reframing the code. It shows the different

dimensions in static code analysis and distributes the

bug according to properties and severity. DynaMine

:Finding Common Error patterns by Mining Software

Revision Histories by Benjamin LivShits and Thoman

Zimmermann 2006:- This paper is develops a tools

DynaMine and is unique for my research. No closely

related but still highlight the concepts of Measurement

and Maintainence of Software bugs by concept of data

Mining and bringing in pattern in error occurrence.

Testing Static Analysis

2. EXPERIMENTAL SETUP

2.1. FindBugs

FindBugs is a smart tool used in detecting static intrusion

points in the code. Findbugs is generally applied in static
testing of java source programs and provides the data defining
the priority of error, confidence factor, type of error and its
effect on other part of the module. FindBugs also includes
some more sophisticated analysis techniques devised to help
effectively identify certain issues, such as Categorization of
bugs by findbugs is:- Malicious code vulnerability:- code that
can be altered by other code. Dodgy :- code that can lead to

error. Bad Practice:- code that violates the recommended
coding practice. Correctness:- code that might give different
results than the developer intended. Internationalization:- code
that can inhibit the use of international characters.
Performance dereferencing of null pointers that require such
techniques and occur with enough frequency.

 Result without coverage

analysis

 Result Improved

FIGURE 1. Flow Chart resembling the basic concept , motive and

gradual advancement in study

code can be transformed to provide better performance.
Security:- security problems in the code. Multithreaded

correctness-multithreaded environment threats.

Experimental- no closing statement of streams, database

objects or others require closing statements.

2.2. PMD

Programming Mistake Detector is a static code analyzer for

Java. Developers use PMD to make program comply with
coding standards and deliver quality code.[2] Team leaders
and Quality Assurance folks use it to change the nature of
code reviews. PMD has the potential to transform a
mechanical and syntax check oriented code review into a to
dynamic peer-to-peer discussion.PMD works by scanning
Java code and checks for violations in three major areas.
Compliance with coding standards :-Naming conventions -

class, method, parameter and variable names, Class and
method length, Existence and formatting of comments and
JavaDocs. Coding antipattern:-Empty try/catch/finally/switch
blocks, unused local variables, parameters and private
methods, Empty if/while statements. Overcomplicated
expressions - unnecessary if statements, for loops that could
be while loops, Classes with high Cyclomatic Complexity
measurement. Cut and Paste Detector(CPD):- a tool that scans

files and looks for suspect code replication. CPD can be

parameterized by the minimum size of the code block. [9]

Important:- PMD comes with 149 rules and 19 ruleset but it
also provides the tester to develop his own set of rules to test
the code and to bring homogeneity in code. Priority
assignment in PMD:-PMD assigns violation priority from 1 to
5.VERY HIGH PRIORITY(indicated with red), HIGH
PRIORITY(indicated with orange), MEDIUM
PRIORITY(indicated with yellow), IGNORANT
PRIORITY(indicated with green), NEGLIGIBLE(indicated

with blue).

2.2.1 PMD Works

 PMD relies on the concept of Abstract Syntax Tree, a finite,
labelled tree where nodes represent the operators and the
edges represent the operands of the operators. PMD creates
the AST of the source file checked and executes each rule
against that tree. The violations are collected and presented in
a report. PMD executes the following steps when invoked
from Eclipse. The PMD engine uses the Rule Sets as defined
in the PMD preferences page to check the file(s) for

violations. In the case of a directory or project (multiple
source files) the plug-in executes the following steps for each
file in the set.PMD uses JavaCC to obtain a Java language
parser.PMD passes an InputStream of the source file to the
parser.The parser returns a reference of an Abstract Syntax
Tree back to the PMD plugin.PMD hands the AST off to the
symbol table layer which builds scopes, finds declarations,
and find usages. If any rules need data flow analysis, PMD

hands the AST over to the DFA layer for building control
flow graphs and data flow nodes. Each Rule in the RuleSet
gets to traverse the AST and check for violations. The Report
is generated based on a list of Rule Violations. These are
displayed in the PMD Violations view or get logged in an
XML, TXT, CSV or HTML report.[9]

Reduction in missed

complexity numbers

(better result obtained)

Final Result and
Percentage wise

analysis

 Static Analysis Of the

Code To Test

PMD Testing for

program mistakes

FindBugs Testing

Source Code For Testing

Coverag

e Testing

www.ijcait.com International Journal of Computer Applications & Information Technology
 Vol. II, Issue I, January 2013 (ISSN: 2278-7720)

P a g e | 3

2.3 JaCoCo

JaCoCo uses a set of different counters to calculate coverage

metrics. This approach allows efficient on-the-fly
instrumentation and analysis of applications even when no
source code is available. In most cases the collected
information can be mapped back to source code and
visualized down to line level granularity. The smallest unit
JaCoCo counts are single Java byte code
instructions. Instruction coverage provides information
about the amount of code that has been executed or missed.
This metric is completely independent from source formatting

and always available, even in absence of debug information in
the class files. JaCoCo also calculates branch coverage for
all if and switch statements. This metric counts the total
number of such branches in a method and determines the
number of executed or missed branches. Branch coverage is
always available, even in absence of debug information in the
class files. Note that exception handling is not considered as
branches in the context of this counter definition. No

coverage: No branches in the line has been executed (red
diamond), Partial coverage: Only a part of the branches in the
line have been executed (yellow diamond), Full coverage: All
branches in the line have been executed (green diamond)

2.3.1 Complexity Description

JaCoCo also calculates cyclomatic complexity for each non-
abstract method and summarizes complexity for classes,
packages and groups. A cyclomatic complexity is the
minimum number of paths that can, in (linear) combination,
generate all possible paths through a method. [5] Thus the
complexity value can serve as an indication for the number of

unit test cases to fully cover a certain piece of software.
Complexity figures can always be calculated, even in absence
of debug information in the class files.

.JaCoCo calculates cyclomatic complexity of a method with
the following equivalent equation based on the number of
branches (B) and the number of decision points (D):V (G) = B
- D + 1. Based on the coverage status of each branch JaCoCo
also calculates covered and missed complexity for each
method. [11] Missed complexity again is an indication for the

number of test cases missing to fully cover a module. Note
that as JaCoCo does not consider exception handling as
branches try/catch blocks will also not increase complexity.

2.3.2 JaCoCo works

 In the abstract sense, complexity beyond a certain point
defeats the human mind’s ability to perform accurate
symbolic manipulations, and errors result. The same
psychological factors that limit people’s ability to do mental
manipulations of more than the infamous “7 +/- 2” objects
simultaneously apply to software. Structured programming
techniques can push this barrier further away, but not

eliminate it entirely. In the concrete sense, numerous studies
and general industry experience have shown that the
cyclomatic complexity measure correlates with errors in
software modules. Other factors being equal, the more
complex a module is, the more likely it is to contain errors. [8]
Also, beyond a certain threshold of complexity, the likelihood
that a module contains errors increases sharply. Many
organizations limit the cyclomatic complexity of their
software modules in an attempt to increase overall reliability.

Methods Coverage:-Each non-abstract method contains at
least one instruction. A method is considered as executed

when at least one instruction has been executed. As JaCoCo
works on byte code level also constructors and static
initializers are counted as methods. Some of these methods
may not have a direct correspondence in Java source code,
like implicit and thus generated default constructors or

initializers for constants. Classes Coverage:-A class is
considered as executed when at least one of its methods has
been executed. Note that JaCoCo considers constructors as
well as static initializers as methods. As Java interface types

may contain static initializers such interfaces are also

considered as executable classes.

3. ANALYSIS

3.1 Bug Pattern

 Infinite recursive Loop: this is one of serious coding

error not detected by compiler but can make your
influential to attacker. When a function is called the
caller and its address are put to stack and if the

called function again makes a call to caller/itself its
again puts it address on the stack , if there is no exit
the stack overflows and the code is dead.

Example:-

Public static void main (String args []){Makeover ()
;} Void makeover ()

{Makeoverdone () ;} Void Makeoverdone (){ if(1)
Makeover (); // not EXIT and the condition always

point to true and the call goes on loop and stack
overflows.}

 Hashcode and Equals

Java.lang. super class files and default equals
method which can be called as it is and does not
erupt an error. But since it is a default one you
cannot force it to behave according to you, for that
you have to override it. This is the step where major
errors originate because with every “EQUALS”
there is associated hashcode, which is used for
hashing (memory management in the operating

system) the bytecode of a compiled java code.

Example: Public static void main (String args [])
{String str=”hello”; String str1=”HELLO” If(
str.equals(str1)) Print(“ they are equal”);}

The equals called is the default one and sometime
the generated output is malignant. If the hashcode is
not defined the interpreter will generate is default
hashcode and the data and variables will be stored

in some anonymous location in the memory. The
correct implementation is [15]

//same code above + Public int hashcode(){Assert
false: “string is erroneous”; Return 434 ;}

 Null pointer dereferencing The null pointer analysis

is a forward intra-procedural dataflow analysis
performed on a control-flow graph representation of
a Java method. The dataflow values are Java stack
frames containing “slots” representing method
parameters local variables, and stack operands. Each
slot contains a single symbolic value indicating

whether the value contained in the slot is definitely
null, definitely not null, or possibly null. Figure

www.ijcait.com International Journal of Computer Applications & Information Technology
 Vol. II, Issue I, January 2013 (ISSN: 2278-7720)

P a g e | 4

3:Eg: - p=null is null, p=”String” is not null and p=f
()/a[i] is NCP (Null on Complex Path). [12].

 Return values ignored: - this means when the called

function returns a value to the caller to pop up from
stack the caller should check the value as it might
create security breach.

 Inconsistent Synchronisation: - In today’s

programming arena everyone wants
multiprogramming and multithreading, in java it is
obtained by wait, sleep, join and the synchronized
block. The code involving the above keywords
should use conditional block like

 Asynchrony: - indicates if the buffer overflow is

potentially obfuscated by an asynchronous program
construct (no, threads, forked process, signal
handler). [7] The functions that may be used to
realize these constructs are often operating system

specific (e.g. on Linux, thread functions; fork, wait,
and exit; and signal). A code analysis tool may
need detailed, embedded knowledge of these
constructs and the O/S-specific functions in order to
properly detect overflows that occur only under
these special circumstances.

 Probable Out of bound Array Indexing [10]:- When

array. Length library function is used in the
initialization (part b) or in condition checking (part
a) of a loop, the probability arises to use the value of

the length of array as the array-index inside the
loop. Thus we have safely used the term: probable’
to give warning for out of bound array indexing.
 int[] array2 = new int[5]; int b7;

 for(int i = 0 ; i<=array2.length; i++){}part(a)
 int[] array9 = new int[5]; int b9;
 for(int i = array9.length ; i>=0; i--){} part(b)

 Figure2 Bug Report of FindBugs

 Figure 3 Bug Report of PMD

3.2 Static Analysis
3.2.1 Dimension of Static Analysis
Static program analysis is a term that was coined by the
compiler community for a set of techniques to investigate
program properties without actually executing the program.
We define code optimization approaches which propel
complexity analysis that is Flow-sensitive analysis:- takes
into account the control flow of a program while a flow-

insensitive analysis does not. E.g., taking loops and branching
behaviour into account are characteristics of a flow-sensitive
analysis while typical text searches are insensitive. Path-
sensitive analysis:- considers only valid program paths. This
means, more program semantics is considered like variable
values conditionals that enable the analysis to distinguish
between feasible and infeasible paths. Context-sensitive
analysis:- takes the calling context of a function such as the

states of input parameters and global variables into account. It
is a special case of inter-procedural analysis, because it not
only considers whole-program information, but the actual
deferent program states in which a function is called.
Static analysis technique based on approximation is:- May-
analysis considers over-approximations of program behaviour.
May analysis, for example, might return as a result for a loop
that indicates a septic variable is written after the loop, even if

the analyzer itself cannot decide if this loop ever terminates.
Must-analysis considers under-approximations of program
behaviour. Must analysis will not return, for the loop example
above, that the same variable is written, as it only considers
those effects that are guaranteed to happen.

 3.2 2 Bug Report of Code 1
 Information about the bug
Bug: Dereference of the result of readLine () without
nullcheck.in.com.BOT1.OverFlowFile.main(String[])the
result of invoking readline() is dereferenced without checking
to see if the result is null. If there are no more lines of text to
read, readLine()will return null and dereferencing that will

generate a null pointer exception. Confidence: Normal, Rank:
Of Concern
(15).PatternNP_DEREFERENCE_OF_READLINE_VALUE.
Type: NP, Category: STYLE (Dodgy code)

3.2.3 Categorization of Bug Report in FindBugs

and PMD
Categorization of bug report is done so as to consolidate the
study of tool behaviour on some strong grounds. We
categorize the bug report as false positive, relevant true
positive and irrelevant true positive. False positive is defined
as an output of tool regarding error, whose removal is not
considerable. Relevant true positive are those error, whose

82.76

13.86

3.38

Relevant True
Postives

Irrelevant True
Positive

False Positives

80.07

13.03
6.9

Relevant True
Positive

Irrelevant
True Positive

False Positive

CODE 1: public static void main (String args [])

throws FileNotFoundException {File file = new File
("C:\\Documents and
Settings\\MAK\\workspace\\BufferOverflowTest\\src\\c
om\\BOT1\\text1.txt");//FileReader, BufferReader

Object defined(br)
Intervals = 0; Double [] nvals = new double [10];
double [] vals = new double [10];try {while
(br.readLine ()!= null){String str =
br.readLine();vals[newvals]=Double.valueOf(str.trim()

).doubleValue(); //bug detected//rest of the code

www.ijcait.com International Journal of Computer Applications & Information Technology
 Vol. II, Issue I, January 2013 (ISSN: 2278-7720)

P a g e | 5

removal is considerable. Irrelevant true positive restricts itself
to structure of the code [10,12]. FindBugs reports 82.76
percent relevant true positive(live projects put to test) 3.38
percent false positive and 13.86 percent irrelevant true
positive. PMD reports 11,597 warnings(80.07 percent)

relevant true positive, 13.03 percent irrelevant true positives
and 6.9 percent false positive. See Figure 2,3,5
 4) JaCoCo - Code Coverage Analysis

The results obtained by the use of the above tools(static
analysis) didn’t fight against the complexity issue. Bugs are
not merely by programming error, it can be also due to
presence of unreachable area in code. We used JaCoCo
analysis and divide the result as Positive results and
Negative Results. Positive Results, in an ironic manner tells

about left over part of the code during testing by highlighting
the statement, so that these statement can

Be improving so as to improve overall complexity of the
code. Negative Results tells about the branches left out by this
tool or we can say it defines the false behaviour of the tool.
Still by combined approach of the tools we manage to achieve
91.7 percent complexity , much higher than earlier 71.3
percent. Note:-high percent unit define more coverage, low

complexity of code and vice versa. Result shown in Figure 7
and 8.
5) Complexity Analysis
Explanation of Results:- Coverage is calculated via
expression Cyclomatic Complexity:-

Covered Complexity:- this entity tells the lines
reached/reachable at compile/runtime. If its value equals to

Total Lines Covered, means each branch is Reachable and
code is free from threat. Missed Complexity:- defines the
branches(LOC) not reachable during testing. If its value
equals total LOC the code is vague and nearer to security
theft.[8] Total Complexity:- derived by drawing graph
nodes(index variables, conditional statement) and edge(flow
of data) . it is calculated by:= E(Edges)-N(Nodes) +2 and
traversing a graph by dijkastra or warshall algorithm to derive

transitive closure , the 0 values in matrix formed shows
missed branches. Fig.4

 Figure 4 Violation/LOC data by PMD tool

 Figure 5 Statement/branch/method coverage of our project

 Figure 6 Code coverage improved after FindBugs and PMD Test

 Figure 7 Result of JaCoCo covered branches in code

 Figure 8 Result of JaCoCo missed branches

3.2.4 Exe File /.class file Analysis
When we compile code it in necessarily converted in .class
file which is generally in low level, more esoteric for the
operating system. A developer can never rectify errors like
heap overflow, stack overflow(though can provide exception
handling in code but its internal to code) neither integer

overflow. A Overflow situation generally occurs when we use
array implementation or size limit in array list like data
structures, we have generated some experimental results on
stack overflow, heap overflow or integeroverflow.String
processing code are ,more vulnerable so we need to impose
strong constraint on the size of the stack(for C/C++ user use
Strncat instead of strcat, strncmp for strcmp etc.).
 TABLE 1. EXAMPLE 1

Stack Address Value

0000 0049

O004 0088

TABLE 2 EXAMPLE 2

Stack Address Value

0000 0066

0004 1234

(No. Of line(Covered & missed)/ Total lines
Covered)*100

www.ijcait.com International Journal of Computer Applications & Information Technology
 Vol. II, Issue I, January 2013 (ISSN: 2278-7720)

P a g e | 6

 TABLE 3 EXAMPLE 3

Stack Address Value

0000 9999

0004 9999

The values in Example 1 represent the location in the
program where execution will resume when the current
function completes its tasks and a value passed to a called
function. In other words, a function was called during
program execution. In order for the program to know where to
resume once the called function returns control back to the

calling function, the address of the next line of code to be
executed is stored in the stack. In this case, the value of that
address is 0049. The value of 10 in offset 0004 represents a
value passed to the called function. In this example, there’s no
problem. The programmer assumed that the value passed to
the called function would not exceed 4 bytes. The called
function executes, and control is returned to the appropriate
line of code in the calling function. [4] In Example 2, an

attacker is taking advantage of buffer overflow vulnerability
in the application. The attacker found that the programmer
didn’t add code to verify the size or data type of the data
passed to the called function. By entering the value 12340088
(which exceeds the expected 4-byte limit), the attacker has
succeeded in overwriting the return address stored in offset
0000 with the address of a malicious executable. When the
called function completes its tasks, control will be handed

over to the malicious program at address 0088 instead of the
next line in the calling function at address 0049. Not all buffer
overflow attacks are designed to cause the execution of
malicious code. In Example 3, the attacker simply entered a
series of 9’s. In this case, the program will probably crash
when it attempts to return control to the calling function.[9]
The data provided to the called function might come from a
variety of sources. The key point to take from this example is

that the input was not properly validated. (Note: For you
purists out there, I know that certain values in the stack might
not be stored most significant digit first. This is just easier for
demonstration purposes.) Heap Overflow:-When a program
retrieves a large amount of data for processing, a portion of
memory known as the heap is allocated to handle the loaded
data. In low-level languages like C and C++, the programmer
is responsible for ensuring the proper amount of memory is
set aside. If the loaded data is larger than the allocated heap

memory, the system could crash.[14] Integer Overflow:-
When adding two integers, the result occasionally exceeds the
memory allocated for the result. When added together, the
following two eight bit integers (10 + 5) fit nicely into an
eight bit result space:
0000 1010 (10) 1100 0000 (208)
+0000 0101 (5) 1101 0000 (192)
0000 1111 (15) 0001 1001 0000 (400)

The sum of 400 won’t fit in an 8 bit memory space. The
integer overflow is not necessarily a good vehicle for outside
attacks. But if your application doesn’t return an exception
error, your data integrity might be a little off. In this case, you
might end up with a value of 144 (1001 0000) instead of 400
in your database or in your next processing step.
Redundant Comparison A finally block in Java is a region
of code associated with a try statement which is guaranteed to

be executed no matter how control leaves the try block. The
Java source to bytecode compiler will emit code for a finally
block either by duplicating it in the generated bytecode, or by

emitting a jsr subroutine. [12]How to represent jsr subroutines
in the control flow graph. This makes jsr and rets instructions
used to call and return from jsr subroutines behave like goto
instructions as far as the dataflow analysis is concerned.
While this could theoretically result in an exponential increase

in the size of the resulting control flow graph. The second
issue is how to handle warnings for code inside finally blocks.
For most kinds of warnings, including null pointer
dereferences, the warning is valid. Redundant comparison
warnings are only valid if the comparison is redundant for
every expansion, and is always redundant for the same reason.
We use the method source line number table to keep track of
duplicated code, and only emit redundant comparison
warnings if all redundant comparisons for a particular line are

in agreement.

4. RESULTS

4.1. Algorithm For Buffer Overflow Bound

Checking

FINDING ARRAY.

 1.1 Mark each array declaration

 1.2 For Each array marked above, check all
subsequent reference.
INDEX VARIABLES:- legal ranges of an array of size n is
0<i<N
 2.1 For each access that uses a variable as an index
write legal range of it.
 2.2 For each index marked in 2.1 underline all
occurrences of that variable.

 2.3 sort out any assignments, input or operation that
may modify this index variable.
 2.4 Mark with a any letter the finding in 2.3
LOOPS THAT MODIFY INDEX VARIABLE.
 3.1 Find loops that modify variables used to index
arrays.
 3.2 For any index that occurs as part of the loop
conditional, underline the loop limit.

 For example: - for (i=0; i<max+1; i++) if I is the index
variable underline i<max+1.
 3.3 Write the legal range of the array index next to the
loop limit as you did in 2.1. Mark a V if the loop limit could
exceed the legal range of the array index.
 3.4 Watch out for the loop that goes until i<=max as the
largest valid index is max-1.
 3.5 If the upper or lower loop limit is a variable, it must

be declared, it must be checked just as indices are checked in
step 2.

4.2. Comparative Analysis
 Efficiency rate is Buffer overflow detection rate.

Table 4. EFFICIENY BASED RESULTS

TOOLS ANALYSIS
STRATEGY

EFFICIENCY
RATE

FINDBUGS Static analysis,
flow sensitive

42.4%

Calculated as (Total no. of warnings (positive) / Total Lines of

Code) X 100

www.ijcait.com International Journal of Computer Applications & Information Technology
 Vol. II, Issue I, January 2013 (ISSN: 2278-7720)

P a g e | 7

analysis, java
byte codes

PMD Unused
variables,

symmetricity in
code, error in
exception
handling,
garbage
collection

51.8%

JaCoCo(Code
Coverage)

Date flow,
Complexity

analysis

17.98%

 Table 5. COMPARISON BASED ON ERROR DETECTED

TYPES OF

ERROR

FINDBUGS PMD

Concurrency
warning

72 4

Null
Dereferencing

27 0

Null

Assignment

6 68

Index Out Of
Bounds

19 11

 Table 6. RESULTS IMPROVED ABOUT TESTING

 Note: TT: test time, W: percent Warning, R; Percent repaired

Table7. TYPES OF BUGS DETECTED BY PMD AND FINDBUGS

BUG
CATEGORY

EXAMPLE FINDBUGS PMD

General Null
Dereference

YES YES

Concurrency Possible
Deadlock

YES YES

Array Length may be
zero

YES NO

Conditional
Loop

Unreachable
code

YES YES

String
Processing

Check equality
(==, =)

YES YES

Object
Overriding

HASCODE
check

YES YES

IO Stream Streams closed
or not

YES NO

DESIGN Static-inner
classes

YES NO

Unnecessary Ignored return NO YES

 Figure 9. Graphical comparison on 5 point scale

 4.2.1 Errors detected by tools-Proof by Code
 Import java.io.*;

 Public class Testing{Private byte[] b; Private int size;

 Testing(){size=25; b=new byte[size];}

 Public void test(){int z; // Variable unused detected by

//PMD

 try{FileInputStream fish-new FileInputStream(“XYZ”);
x.read (b, 0, size); // Method value ignored detected by

FindBugs

 c.close();}catch(Exception e) // IO stream unclosed on

exception //caught detected by Findbugs

 {System.out.println(“help, I m caught”);} for(int y=1;

y<=size;y++){If(Integer.toString(50)==Byte.toString(b[

i]))//Using == for //comparing string detected by

findbugs

 System.out.println(b[i] + “”);}}//end of test

method}//end of class

5. CONCLUSION AND FUTURE WORK

FindBugs and PMD analysis of the code really lowers the

threat of the software (table 5). With the tremendous rise in
object oriented programming the threats increase, at syntax
level, bytecode and unused part of the code which consumes
only memory. We put forward an algorithm that rectify the
erroneous lines and perform bounded buffer checking. The
coverage analysis of an untested code is merely 21.7 % but
after static analysis we can achieve about 91 % coverage.
Large unreachable lines in program bring in security breach

like buffer overflow and diversion of the program from its
intended use. We conclude , findbugs and PMD analysis at
static level and assertions at dynamic level retards the fragile
lines in program and reduces its time complexity.Findbugs
well detected the bugs and it provides clear rationale of the
bugs but it detects only syntactic errors but not sematic bugs,
highly dependent on the coding standards, these tools is they
don’t understand what your software is trying to do and there

sense of context is extremely limited which can lead to false
positives being generated, for which the developer has to
spend time to review it.PMD helps in finding programming
bugs along with addressing of some complexity issues but it
irrelevant true positive rate is very high, works on basis of
some rules set, needs experience. Figure 9 personnel(AST tree
study) and addresses bad practice problems well but lack
performance features when compared to find bugs(in terms

false positive rate).

4.3
3.1

4.2 4.6

0
1
2
3
4
5

PMD Detect

Findbugs Detect

 Prog.name TT(min) LOC %W %R

1. Excel 6 520 70.59 69.21

2. Online Exam 5 320 41.06 41..06

3. ITrust 10 3500 63.51 63.34

4. JBOSS** 29 90000 56.81 54.08

www.ijcait.com International Journal of Computer Applications & Information Technology
 Vol. II, Issue I, January 2013 (ISSN: 2278-7720)

P a g e | 8

5.1 Future Directions

5.1.1 Future Scope in Findbugs
 The fact that Findbugs support only java, limits its uses to
java based application. However findbugs support detection of
various categories of bugs like:- Performance bugs in

embedded applications ,Concurrency bugs in Complex
multithreading. Priority Based analysis of Bugs(+200 bugs
detection in findbugs).

5.1.2 Future Scope in PMD
 In our research we focused on static buffer overflow
,coherent code generation and violation detection using PMD
but it has far more scope in future in areas like:-Data Flow
Analysis, Better Symbol Analysis and Code Cleanup-
detecting and correcting sloppy codes.

5.1.3 Future Scope of JaCoCo
 We used this tool for analyzing cyclomatic complexity of
code, indentifying statement coverage and branch coverage,
however this tool serves a panacea for various white box

testing and finds it’s utility in detecting missing requirement
in software engineering and UML diagrams. It can also serves
as tool for Feasibility analysis of software projects.

6. REFERNCES
[1] Cowan C., Wagle P., et al, “ Buffer Overflow :Attack and
Defenses for the Vulnerability of the Decade “ACM
Transactions on Computer System, Vol 19, No.2,pages 217-
251, 2001
[2] Hamid A., “Making FindBugs More powerful” ,
University of Texas at Arlington, USA in IEEE 2nd
International Conference on software engineering and service
science, 2011

[3] Huuck Ralf, Tap Micheal,”Fade To Grey: Tuning Static
Program Analysis”, Not published
[4] Hsu Allen, “Analysis Tool Evaluation: PMD”, Not
Published

[5] Jacobson Ivar “Object Oriented Software Engineering,
information about Code Coverage Analysis”, ACM
computing Press, 2010
[6] Leek T. et al “ Testing Static Analysis Tools using
Exploitable Buffer Overflows From open source code”,

Proceedings of 12th ACM SIGSOFT international symposium
on foundation of Software Engineering,2004
[7] Lippman,”A Taxonomy of Buffer Overflows For
Evaluating Static and Dynamic Software Testing Tools”
Proceedings of Workshop on Software Security Assurance
Tools, Techniques, and Metrics, NIST Special Publication
500-265, Eds. P.E.Black, M.Kass and E.Fong, National
Institute Of Standards and Technology, pp.44-51, 2005.
[8] McCabe,Cyclomatic Complexity-Structural Testing

[9] Ozlak T,”Web Application Security –Buffer Overflows
Are you really at risk”, Not published
[10] Pugh W., Hovemeyer D, “Experiences Using Static
Analysis to FindBugs”,IEEE Journal volume25 issue 5, pages
22-29, 2008

[11] Sommerville I., “Software Engineering”, 6th ed, Addison-

Wesley, 2001.
[12] Spacco J.,”Evaluating and Tuning a Static Analysis to
Find Null Pointer Bugs”, Proceeding of the 6th ACM
SIGPLAN –SIGSOFT workshop on Program analysis for
software tools and engineering page 13-19 and in Newsletter
ACM SIGSOFT software engineering notes volume 31, issue
1, 2006,
[13]Wilander J. ,KamKar M. ,”A Comparison of Publicly

Available tools for Dynamic Buffer Overflow Prevention”, In
Network and Distributed System Security Symposium
(NDSS) (February 2003), pp 149-162, 2002
[14] www.cwe.mitre.org/top25 (online) [21st June 2012]
[15]www.cs.toronto.edu/~sme/CSC/302/notes/19-static-
analysis.pdf (online) [23rd June 2012]

http://www.cwe.mitre.org/top25

