
www.ijcait.com International Journal of Computer Applications & Information Technology
 Vol. I, Issue II, September 2012 (ISSN: 2278-7720)

P a g e | 30 y

An Optimized Technique of Increasing the Performance
of Network Adapter on EML Layer

Prashanth L

4th semester, M.Tech [SE],

ISE Dept
RVCE Bangalore

 Shantharam Nayak
Associate Professor,

ISE Dept
RVCE Bangalore

ABSTRACT

Simple Network Adapter initially which acts as an interface
between the Transaction server and Network Elements
communicates over the channel through TCPPDU. Presently the

disadvantage being involved in TCPPDU is to maintain the
channel contention, reservation of channel bandwidth. The
disadvantage being involved is certain features, version of
network elements communicates by receiving the xml over the
socket. So, it’s not possible to change the entire framework, but
by updating the framework an XML Over Socket(XOS)
formation should be supported. The XOS implementation is being
performed using Java language through mainly in JVM. Such that
by this deployment machines would become easier and form a

good communication gap between them. This simple network
adapter being developed should support operations of the North
bounded server and gives an established authorized, secured,
reliable portal. The interface being developed should provide a
good performance in meeting the network demands and operated
conversions of respective objects.

Keywords

XML Over Socket(XOS), XML Req, XML Resp

1. INTRODUCTION

The Simple Network adapter acts as an interface between TL1

and NEs. Simple Network adapter receives Java objects through
TL1. The SNA Framework is a set of loosely coupled java classes
that provide a skeleton or supporting structure for building SNA
adapter features. The SNA architecture is generic enough to
handle the request related to TL1, CL1 and SNMP. The
framework being designed in unmanaged memory languages are
difficult to handle. Lot of memory related operations are being
done manual[4].There are several solutions to the problem

mentioned above; one is through the use of memory handling
languages such as Java. Java being more advanced and powerful
language performs handling of memory, run time exceptions
automatically without the intervention of the user. Simple
Network Adapter performs Operations such as Backup,
Download on Network Elements depending on the feature which
is being processed from the received request. Initiates Commands
to the Network Elements understood language. Simple Network

Adapter receives XML over the socket from TL1 based on the
request object, finds out the feature name and processed. The
Behavior of SNA is based on JVM Properties, which is used
during initialization process; design of SNA is such that, we can
have more than one instance of SNA in a machine based on
different JVM properties file. There is to be very limited or no
persistent data stored in the SNA. The required data is stored
using Oracle with JDBC. The following categories of Data are to
be stored by the SNA, NE connection information. The adapter

which forms the major communication on the element

management interface layer, operates over the various elements
not only on the transaction server. Handles various other elements
with respect to the request being involved. Simple network
adapter should be configured before on operating over other
networking devices. Simple network adapter should handle the
information related to the elements. Information being considered
should be present in the info queue. This performs the operations

based on the queue priority[3].The Simple Network adapter
handles the information depending on their availability. The
information is placed in the database if the information is being
huge. The database involves ne configuration details which are
being secured over the other adapters through firewalls, gateways
and so on. The security is being established over all the paths in

the layers so that there is no unauthorized access to the

operations of these parts. The authentication is being done

before operating on these elements

1.1 ORGANISED MODULES

The SNA is logically organized in the following functional areas.
Adapter Framework–A set of loosely coupled classes that provide
a skeleton or supporting structure for building SNA adapter
features. Platform supported– Utilities reused from the OMS core
and platform portion of the project. Release Feature Set–The
layout of classes that represent features supported by SNA.
Feature need to be common for all NE Type Release, NE specific

details are handled in feature specific, NE Type Release specific
Mappers. Services-Data Storage–classes that are related to the
support access to the data storage. Notification – Autonomous
event processing and filtering. Connection Management–NE
Management features includes watchdog, monitoring and
recovery. During SNA Framework Initialization all the sub
components of Framework and other communication layers like
TL1, CLI, and SNMP get initialized and register with framework.

2. ARCHITECTURE

Figure 1: SNA Architecture

www.ijcait.com International Journal of Computer Applications & Information Technology
 Vol. I, Issue II, September 2012 (ISSN: 2278-7720)

P a g e | 31 y

 The SNA architecture is generic enough to handle the request
related to TL1.

FRAMEWORK

The SNA Framework as shown in figure 1 is a set of loosely
coupled java classes that provide a skeleton or supporting
structure for building SNA adapter features that exchange
information through transactions with a network element (NE).
The goal of the framework is for any developer to use the
framework to produce features in short period of time with high
quality. The Framework is specifically written to address
problems encountered in writing features. It is optimized to solve

problems in this domain. The framework is easy to use, robust,
and feature – rich. It allows feature designs to be implemented in
a consistent manner. The major areas of functionality of the
framework are:

 Initialization – start-up and control of the framework

threads.

 Client Request Handler – processes client request.

 Feature Dispatcher – instantiates features based on

requests and dispatches the features to the thread pool
for execution.

 Transaction Deployer – classes that control the flow of

transactions issued by a feature including routing all
commands, responses and autonomous messages to the
appropriate consumers.

 Data Storage – stores connection and performance data

for SNA features to use without having to retrieve
information from the NE or OMS.

The Framework code base consists of SNA platform
utility classes to perform the following functions:

 Logging – mechanism for creating application activity

logs.

 Trace – mechanism for presenting application debug

information.

 Thread pool – mechanism for handling features in

individual threads.

 Job Handler – classes for feature execution flow

control.

FEATURE DISPATCHER

The Feature Dispatcher is implemented as thread which reads the
client request objects of its queue based on the request type and
scope in the client request, the feature dispatcher decides by
looking it up in the features resource files which feature class to
instantiate [1]. Then the Feature Dispatcher client requested
“Feature” on to the thread pool for execution. The Feature
Dispatcher also implements the functionality of iteration by
recognizing the unique iteration requests. Once an iteration call is

determined the feature dispatcher re- dispatches the awaiting
iteration clients. The feature dispatcher helps in handling all the
information to the related request.

JAVA THREAD POOLING

The thread pool policy is used within SNA for the feature

executions. Thread pools are instantiated, as they are needed. One
pool is initialized at start up for handling the features execution.
The framework implements classes as static threads to perform
functions needed by the features. These threads are static and

exist over the lifetime of the SNA execution. The SNA thread
pool is used for dispatching feature class for execution. The
Framework implements classes as dynamic threads to perform
functions needed.

USER JOB HANDLER

The Functionality of the Job Handler is provided by the SNA
framework using the Abstract feature that extends Base job and
Job classes. Abstract feature provides additional functionality to
support feature related Handling [2].

PROCESSING FEATURE

 The Feature controls the processing of the transactions with the
NE. It also helps the developer to generate sequences of
transactions into group. Each feature could contain one or more
groups. The transactions that could be sent down at the same time
are in the same group.

 Each Transaction group controls the response of all the

transactions in this group. Each feature controls the response of
all the Transaction Groups. Based on the specific request, each
feature- implemented by feature specific, NE specific Mappers
needs to decide how many sub-tasks are needed. The feature is
aware of each transaction and would know if the transaction from
an originator and would know if the transaction is a TL1
transaction of a CLI transaction or a SNMP transaction. Also all
autonomous messages are converted to Transactions and send to

registered Listener. Based on the specific request, each feature-
implemented by feature specific, NE specific Mappers needs to
decide how many sub-tasks.

GROUP TRANSACTIONS

Transactions can either be Control Transactions, which configure
the communications with the Network Element or can be Network

Element Transactions which are sent to the Network Element.
The Features creates Transactions and adds them to a Transaction
Group sends each transaction and then waits for each response

before reporting back to the feature that the group has completed.

Figure 2: Transaction Flow

Communication

The SNA uses TL1, CLI and SNMP communication for
communicating with NEs.

TL1 communication layer connects by TCP/IP or OSI with

Network Elements. CLI communication layer connects by TCP/IP
with Network Elements .SNMP communication layer connects by
UDP with Network Elements.

Transaction

Ne

Transaction

Control Transaction

TL1

Transaction

Add

Connection

Group

SNMP

Transaction

CLI

Transaction

www.ijcait.com International Journal of Computer Applications & Information Technology
 Vol. I, Issue II, September 2012 (ISSN: 2278-7720)

P a g e | 32 y

3. WORKFLOW

 Communicate with the North Side and South Side and

access management information.

 Process the Requests, obtains information in the

specified format.

 Provide Secure Communications using TCP/IP.

 Create and support services.

 Backup, Download, Restore and Software Management

Operations are being carried out.

3.1 METHODLOGY

 SNA (Simple Network Adapter) is used to

communicate from North side to Network Elements.

 SNA Framework is used to transfer the requests from

Thread pool to the Network Element Manager
Understanding Format.

 Using Specification Communication layer provide

Secured Communications.

 Handling of XML over Socket to SNA specific tags

using JAVA XML templates to identify the feature and
Network Element type element and check out whether
the feature is being supported by specified Network
Elements. Operations such as Backup, Download,
Restore.

 Shell Scripting to invoke the SNA Server, with
supportive Feature perform the Operations.

SNA parses the XML and analyses further to find the
corresponding Feature. It then constructs the communication
interface REQ object and handover the REQ object to
communication layer by calling invoke Operation. Comms layer
generates NE specific commands for corresponding “Service
Name” and sends it to NE. When Response from NE arrives, it
parses that response and forwards it back to SNA. SNA validates
the structure of response and constructs the XML-RESP and

sends it back to PA/COO.

 Figure 3: Control Flow

 Simple Network Adapter which handles large Number
of requests and responses, one of the major constraints were run
time exception, handling of huge Network Elements were
complicated. Present Simple network adapter architecture lead to
handling of memory management explicitly using garbage
collection.

Memory Utilization is one of the complicated issues; the past
design of Simple Network adapter which was done in C++ was
having a major conflict in memory leakages, garbage collections.
Cautions’ handling of dangling pointer, Memory out of bound
exception, segmentation fault were the major issues, which lead to
improper working[5]. Adaptation, consistency to work with

neighboring instances of simple network adapters is the major
criteria being involved in the design.

4. PERFORMANCE

In Telecommunication domains performance is one of the key
factor in meeting the market crisis and competing with the

competitors. The new designed architecture is reliable enough in
handling communications between the integrated components.
The key factor of adapter is it accommodates to newer updated
network elements and its software versions[6]. The adapter is
capable enough in handling real time scenario exceptions. The
adapter designed is performed using multi threading capabilities.
The legacy design has a constraint of memory operations which
slows downs the operations of neighboring components. The java

designed architecture is executed over platform jvm which adds
core to the performance issue. The adapter is integrated enough in
doing tasks related to reducing network bandwidth and
capabilities of failure. The adapter is motivated in increasing the
success of progress rates and optimized way of performing
operations. The C++ and java versus graph are drawn in fig 4,
where various tests are carried over each other on several
different tasks and graph is drawn.

Figure 4 C++ v/s JAVA

5. CONCLUSION

Simple Network Adapter which is being newly
developed with new Architecture involves lot of challenges such
as deployment of this architecture on any of Network Elements
Platform, Platform Independent. Handling of Multiple Threads is
done by synchronization and best utilization of Memory. The

Simple Network Adapter could be deployed either co-resident
within the same Java Virtual Machine as the Optic Management
System Platform adapter application or remotely in a separate
Java Virtual Machine that would run in the same or separate
machine. The behavior of Simple Network Adapter is based on
the Java Virtual Machine Properties, which is used during
Initialization Process; design of Simple Network Adapter is such
that, we can have more than one instance of Simple Network

Adapter in a machine based on different Java Virtual Machine
Properties File. Simple Interface over across all the features being
supported and handling of all types of network elements and at all
layers.

www.ijcait.com International Journal of Computer Applications & Information Technology
 Vol. I, Issue II, September 2012 (ISSN: 2278-7720)

P a g e | 33 y

6. REFERENCES

[1] Priority inversion at the network adapter when scheduling
messages with earliest deadline techniques. Meschi, A., Di

Natale,; Spuri , M, ;

Digital Object Identifier: 10.1109/EMWRTS.1996.557931,
Page(s) : 243 – 248.

[2] Cost Effective Network adapter by Schaff, F. ; Willebeek
LeMair, M.: Patel, B.; Digital Object Identifier:
10.1109/HPCS.1992.759255. Page (s) 292- 300.

[3] A high performance software solution for packet capture and
transmission by Dashtbozorgi, M. : Azgomi , M.A;. Digital

Object Identifier: 10.1109/ICCSIT. 2009.5234920. Page (s) 407-
411.

[4] Introduction to Simple Network Adapters
fromquinxhttp://www.quinx.com/en/products/smart-network-
adaptors/index.html.

[5] Schonwalder J, Marinov V “On the Impact of Security
protocols on the performance of SNMP” this paper appears in
Network and Services Management, March 2011, ISSN 1932-
4537, page(s) 52-64, vol 8, issue 1.

[6] Aleksic S, Fehratovic N “Requirements and limitations of
optical interconnect for high capacity network elements” this
paper appears in Transparent Optical Networks (ICTON) 2010,
ISBN 978-1-4244-7799-9, Munich, 27 June 2010- 1 July 2010,
page(s) 1-4.

