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ABSTRACT 
The game of Awale is a member of the Mancala family. The 

problem of developing a good agent for playing Mancala 

games by a computer agent is an open issue. This study 

presents an agent that is based on the combination of Minimax 

search and Aggregate Malanobis Distance Function (AMDF), 

to evolve an agent that can play Awale at a competitive level. 

The result of the combination is appealing. 
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1. INTRODUCTION 
The problem of developing adequate heuristics for playing 

mancala games by a computer is an open issue in the study of 

games that originate from the mancala family [1].Moreover, 

the development of computer game-playing algorithms is a 

challenging problem in artificial intelligence. Many game 

concepts are of practical use in problem solving and in 

building game-playing programs. In retrospect, the theory of 

games [2] looks to be explicitly designed for reasoning about 

multi-agent systems. 

This study considers a combinatorial count-and-capture, two –

person-zero-sum board game called Ayo[3].the Awale board 

comprises 12 pits on two rows called as usual, North and 

South, with 4 seeds in each pit at the beginning of a game. 

The following rules are commonly applied. An agent selects 

all seeds from a non-empty pit on his row and sows them 

counter-clockwise into each pit excluding the starting pit. If 

the last seed is sown into a pit on the opponent’s row, leaving 

that pit with 2 or 3 seeds, the agent captures the seeds in the 

pit and seeds in preceding pits on the opponent’s row that 

contain 2 or 3 seeds(this is called the 2-3 capture rule).An 

agent cannot capture all the seeds on the opponent’s row, so 

he is obliged to make a move that will give his opponent a 

move and this is called the golden rule.A controversial rule of 

Awale, yet to be resolved, is when an agent cannot move in 

such a way that he gives his opponent a legal move, then 

either the game is cancelled or the agent that caused this 

stalemate loses the game no matter his score. The game 

ends(1)when an agent has captured more than 24 seeds, or (2) 

when both agents have captured 24 seeds leading to a draw or 

(3) when fewer seeds circulate endlessly on the board. Case 

(3) has the following specialisation: if there are fewer seeds 

on the board that neither agent can ever capture, but both 

agents will always have a legal move, the game ends and each 

agent is awarded the seeds on his row. 

The objective of this paper is to show how minimax search 

can be combined with Aggregate Malanobis Distance 

Function(AMDF) to evolve an agent that can play Awale 

reasonably well. The rest of the paper is succinctly described 

as follows; 

 Section 2 overviews the related work.   

 Section 3 describes minimax search and the 

implementation of Aggregate Malanobis Distance 

Function(AMDF) procedures and provides the 

algorithm.  

 Section 4 presents experimental test and results.  

 Section 5 is the conclusion.  

2. RELATED WORK 
Minimax search is a fundamental class of algorithms for game 

playing. The algorithm constructs a game tree and uses 

backward induction to predict the game value. The game tree 

complexity is approximately
DW , whereW stands for the 

branching factor and D is the average game length. The 

problem is that a combinatorial game such as Awale cannot be 

managed by a full game tree due to time demand and memory 

limitation. 

An evolutionary strategy was investigated for evolving 

Awale, a game similar to Ayo. Six features were considered 

for the design of an evaluation function [4].An Awale agent 

utilizing minimax search was evolved using a genetic 

algorithm with the objective of showing that a better 

representation can lead to a deeper search [5].Six additional 

features were added to those used in [4] to improve 

performance of an Awale agent.  

The evolved agents were evaluated against Awale shareware 

(Myraid Software, see website) at a search depth of 12. The 

results obtained at the strongest level to play are shown in 

Table 1[4, 5]. 

 

Table 1. Results of playing Awale using evolutionary methods 

                                      Results from Davis and Kendall(2002) at Depth 7 

Moves(Standard Deviation) Seeds Captured(Standard Deviation) 

     Evolved Agent                              Awale Shareware 

              80.00(5.48)     4.40(0.55)    26.80(1.64) 

 

                                         Results from Daoud et al.(2004) at Depth 5 



www.ijcait.com                                   International Journal of Computer Applications & Information Technology 
                                                                                                           Vol. I, Issue II, September 2012 (ISSN: 2278-7720) 

P a g e | 93                                                     

              51.10(0.19)            6.40(0.27)           26.50(0.10) 
 

The results in Table 1 provide an indication that evaluation 

functions with more features might not necessarily improve 

the performance of the Ayo agent, since the evolved agents do 

not considerably differ in quality when compared with Awale. 

An endgame database, such as constructed by [6],can be used 

to evolve an Awale Agent, but such an endgame database 

requires a large storage space. It was concluded that to 

improve the playing strength, it is more important to have a 

larger endgame database than to have a better evaluation 

function [7, 8].The challenge therefore, is to construct an 

agent with space requirements small enough to fit into main 

memory. Minimax search and AMDF were investigated for 

this purpose 

3. MINIMAX SEARCH AND AMDF 

HEURISTIC 
Generally, the value of a leaf is estimated by the evaluator and 

represents the number in proportion to the chance of winning 

the game. The evaluator can be extended to the minimax 

function, which determines the value for each player in a node 

and is formally given in (1) as follows [9,10]: 
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The function eval (n) scores the resulting board position at 

each leaf node n. The standard method of scoring is in terms 

of a linear polynomial [11]. It has been shown that every 

game tree algorithm constructs a superposition of a max (T


) 

and a min (T
_

) solution tree. The equivalent evaluator is the 

following Stockman equality [12]: 
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Where the function g is defined by [13]: 
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Conventionally, the basic idea of minimax algorithm is 

synonymously related to the following optimization 

procedure. Max player tries as much as possible to increase 

the minimum value of the game, while Min tends to decrease 

its maximum value at node n as both players play towards  

 

 

optimality. The entire process can be formally described by 

the following extended Stockman formula (4) below: 
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The algorithm is designed in such a way that the moves 

(strategies) are classified into two (2) classes 1c
 and 2c

 

which represent good and bad strategies respectively. Using 

the Aggregate malanobis distance function (AMDF) which 

finds the malanobis distance [14, 15] of each strategy on the 

current board state for both classes of strategies. The result of 

the bad strategy is then divided by the sum of both the good 

and bad strategies. Thereby selecting the highest possible 

score as the best .The AMDF algorithm is described more 

compactly by the following pseudo-code: 

 

(1) Given a game state, let the vector 

move
   kmmms ,....,, 21

 be a set of S feasible 

moves. Where there can be 61 ss 
number of 

possible strategies 

(2) Classify the moves into 1c
and 2c

 classes using   

Tchoucallion (strategies)  

(3) If 1c
 and 2c

 are not empty matrixes, then find the 

inverse (covariance) of the respective matrices which are 

gI
and bI

, where 1c is the good strategies 2c
while 

are the bad strategies.  

(4) Let 1cM g  and 2cMb  where gM
and bM

 

are the respective means of good and bad strategies. 

(5) If gc
= 1 which as a determinant (mean) of gc

of good 

strategies which satisfies equation5below:  
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Else select bc
= 0 to satisfyequation6 
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(6) Compute the Distance
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  where bD
 

and gD
 are the respective distances to bad and good 

strategies  

(7) Select the highest of the possible strategies as the best 

strategy using this equation for all available strategies  
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Furthermore we provide the mathematical explanation for our 

evolved player, where given data points are given as 

vectors
  n

nxxxxx  ,...,,, 321  and let a dataset 

D  consists of N  data points
 nxxxx ,....,,, 321 .The 

general problem of data clustering is to partition a dataset into 

m clusters of similar data points. The pd-clustering technique 

relates probability and distance using a simple inverse 

principle. For each 
Dx

 and cluster centroid kc
, the 

probability 
 xpk that x  belongs to D is given as[16].  
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          where T is a constant. 

This result can be interpreted as meaning that cluster 

membership is more probable the closer the data point is to 

the cluster centroid and the larger the cluster. [26] have shown 

that Equation (5) is the solution of the following extremal 

problem: 
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 Where
 xd1  and

 xd2  are distances of the data point x to 

the cluster of size 1q
and 2q

and
 xp1 and

 xp2 are the 

cluster probabilities. To solve Equation (6), the Lagrangian of 

the problem is defined as: 
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By zeroing the partial derivatives P

L





1 gives the solution to 

Equation (7) as follows: 
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where k  is the number of clusters. The distance function 

 yxd ,
 that measures the closeness of the vectors x  

and
y

  is usually given as: 

ny x,,),(                                      yxyxd
(11)

                  

where ||.|| is a norm. There are several norms for distance 

computation and examples include Chebycheu, Proscrute, 

Euclidean and Mahalanobis, which is preferred than the 

Euclidean because it is consistent across conditions and it 

pays equal attention to all components.  
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where A
T

means transpose vector of A  and 


1

K  is the 

inverse matrix of the covariance matrix 
K given by 

 

 

   
 









N

i ik

N

i

T

kikk

k

xu

cxcxxu 11

                                 
(13) 

Where 

 
 

 

   
2

2

22

1

11

22

2

1

11

,,

,

1,

















































q
cxd

q
cxd

cxdq
cxd

xu

ii

i

i

ik

      (14) 

 

4. EXPERIMENTAL TEST AND 

RESULTS 
We conducted an experiment to determine the performance of 

our evolved player. A match consists of 10 games and each 

agent started 5 times. No time restrictions were given, but we 

accepted a default search depth of 12 for Awale so as to 

increase the response time. Minimax and Minimax-AMDF 

agents used a depth of 6.Moreover, the same computer was 

used by the agents, the average score and average moves were 

recorded.  

The scores of a game are numbers of seeds captured by both 

agents. The agent with a higher score is the winner of a game. 

 

Table 2. The outcome of the experiment. 

ADMF-Minimax (Average) Minimax (Average) No of Moves 

28.00 7.00 38.50 

 

ADMF-Minimax Awale (initiation level) No of Moves 
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26.00 5 23 

 

ADMF-Minimax Awale (beginner level) No of Moves 

26.00 7.6 33 

 

ADMF-Minimax Awale (Amateur level) No of Moves 

39.6 18.6 39.6 

 

ADMF-Minimax Awale (Grandmaster level) No of Moves 

61.6 25 61.6 

The result in Table 2 shows that Minimax-AMDF performed 

very well against all the opponents except at the grandmaster 

where it competed vigorously but lost the game at the end. 

The combination of Minimax and ADMF has shown that they 

can be combined to reasonably play Awale. 

5. CONCLUSION 
A heuristic is presented that combines minimax search and 

AMDF to evolve an Awale agent. The heuristic was tested by 

training an aggregate malanobis distance reasoned with 

strategies acquired from human agent. However, it would be 

interesting to investigate more extensively the AMDF training 

with extracts of the endgame database by[6], since the Awale 

game is similar to Ayo, and Awale is solved using the 

endgame database. The results of the experiment performed 

shows that combining minimax search with AMDF improves 

the playing strength of the Awale agent, it provides a good 

result at a deeper search, and give an efficient heuristic for 

evolving an Awale agent. 
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