
www.ijcait.com International Journal of Computer Applications & Information Technology
 Vol. I, Issue II, September 2012 (ISSN: 2278-7720)

P a g e | 85

Performance Analysis of a Network using GriFT
Monitoring Technique

 Priya Kundal Raj Kumari Bhatia
 U.I.E.T, P.U. Assistant Professor, U.I.E.T

 Chandigarh Chandigarh

ABSTRACT
Fault tolerance is an influential field of concern while
working in a grid. Sharing as its primary goal of evolvement,
a Grid includes hardware, software, and heterogeneous
resources from different organizations spread over large
geographical area which would make it a complex behaviour
system. With this composite nature grid systems are hard to

manage and will result in a faulty system. To over-come this
breach of failure a monitoring technique is required that could
observe and analyze the performance of the environment and
report the existence of faults. This paper presents the design,
implementation and evaluation of the monitoring technique
called GriFT which is developed using the concept of Grid
Monitoring Architecture (GMA). The analysis is done by
deploying it in a real laboratory set-up.

Keywords

Grid Computing, Fault Tolerance, GMA, GriFT monitoring
technique.

1. INTRODUCTION

 In today’s modernized world of high speed
computing, computers are playing a vital role in our day to-
day life. Due to the expensive nature of supercomputers and
frequent need of large computations, it was difficult to process
the tasks. So the companies came to the conclusion that rather
than buying new machines! Why not they could make use of
unutilized resources available in the organization. For this the

term Grid Computing came into existence.

Grid computing- The term gird computing is often
presented as an paradigm similar to an power electric grid,
where a variety of resources contribute power into a shared
resource “pool” for many consumers to access on an as-
needed basis[1]. In context to computing, It is an environment
that has simple idea behind its evolvement- providing users
with the ability of sharing and transparently accessing the

resources in a distributed and heterogeneous environment. It
is a rapidly emerging paradigm for a wide area computing. Its
main goal is to provide a service-oriented infrastructure to
perform against a common goal, to solve a single task and
then may disappear. Grid computing enables virtual
organizations to share geographically distributed resources as
they pursue common goals, assuming the absence of central
location, central control, omniscience, and an existing trust

relationship. The grid computing can be defined as:

“A type of parallel and distributed system that
enables the sharing, selection and aggregation of
geographically distributed autonomous resources dynamically
at runtime depending on their availability, capability,

performance, cost, and user’s quality-of-service requirements
[2].”

 Or

“A computational Grid is hardware and a software
infrastructure that provides dependable, consistent, pervasive,

and inexpensive access to high-end computational capabilities
[3]”.

The Grid Systems are very vast to work with. It
involves aggregation and sharing of resources at large
geographical area. Management of these resources is
important as they may be owned by different organizations
with their own policies. Because of highly heterogeneity and
complex environment, the chance of faults increases. It is not

limited to this; the environment and the applications size are
increasing dynamically which demands high availability of
resources, and mechanism that is highly scalable, adaptable
and reliable. In this highly dynamic environment fault
tolerance mechanism becomes a necessity.

Fault tolerance- To over-come the breach of failure
in grid a fault tolerant technique is required which would help
working in grid a success. This property is necessary for the

system that works on parallel running applications, since the
failure rate grows with the number of processors. Fault
tolerance can be defined as the property of the system that
will preserve the delivery of expected services despite the
presence of faults-caused errors within the system itself.
Errors are detected and corrected, and permanent faults are
located and removed while the system continues to deliver
acceptable service [4,5].

The fault tolerance has become the key area of
research. Till time there is no single system to which we can
say “it is fault free” or can handle all its faults completely.
Grid is dynamic system and the nodes can leave and join
voluntarily. To make fault tolerance system a success we must
consider:

 How new nodes join and leave the system.

 How the resources are being used in the
system.

 How the resources managed and distributed in
the system.

While working with these all these factors, we have
to consider desirable properties of failure detectors and
correctors that are given as follows [6]:

 Completeness: Any kind of failure (process or
machine crash) is eventually detected by all normal
nodes.

www.ijcait.com International Journal of Computer Applications & Information Technology
 Vol. I, Issue II, September 2012 (ISSN: 2278-7720)

P a g e | 86

 Accuracy: The probability of false positives is low.

 Consistency: All processes that are not declared as
failed obtain consistent failure information
including false positives.

 Flexibility: able to handle various types of network
settings.

 Detection Latency: The time taken by a system to
detect failure must be low.

 Adaptiveness: Systems should bring up with a small
amount of manually supplied information about
network settings.

 Low overhead. Monitoring should not have a
significant impact on the performance of application
processes, computers, or networks.

Phases of Fault Tolerance

There are four phases of fault tolerance in which a
complete fault tolerant system works [7]:

 Fault Detection

Fault detection or monitoring is the process of
recognizing that a fault has occurred. It is often required
before any recovery procedure can be initiated.

 Fault Location

Fault location is the process of determining the
location of faults so that an appropriate recovery can be
initiated.

 Fault Containment

Fault containment is the process of isolating a fault
and preventing the effects of that fault from propagating
throughout the system.

 Fault Recovery

 Fault recovery is the process of regaining
operational status or remaining operational via
reconfiguration even in the presence of faults.

The greatest problem of recovering from failure is
the 1st phase of fault tolerance i.e monitoring phase.
Discovering a problem over a huge network like grid is a
difficult task as it involves many distributed hardware and
software components. The more components it involves lesser
will be the chances to identify the problem.

The paper is organised as follows: Section II will
briefly describe about Monitoring, its benefits and

architecture, Section III we will discuss about GriFT
monitoring technique, Section IV will discuss its proposed
methodology that we followed to develop GriFT and Section
V and Section VI will gives the implementation, results and
conclusion and the future scope of the technique

2. Monitoring

Grid monitoring can be defined as the measurement and
publication of the state of a Grid component at a particular

point in time. To be effective, monitoring must be “end-to-
end”, meaning that all components between the application
endpoints must be monitored. This includes software (e.g.,
applications, services, middleware, operating systems), end-

host hardware (e.g., CPUs, disks, memory, network interface),
and networks (e.g., routers, switches, or end-to-end paths)[8].
Monitoring is needed to determine the source of the problem.
It involves Error detection, performance analysis,
performance prediction, scheduling, etc. Monitoring plays a
vital role in grid computing to recover from failure by

identifying which component failed and why.

By monitoring the system or observing its working, we can
analyse the system performance, can perform fault detection,
we can identify the bottle neck in the system, or can tune the
performance of the system, and it also helps in showing
dependability over other components[9].

The GriFT application is grounded on the Grid Monitoring
Architecture (GMA) concept that depicts the relationship

between producer, consumer and directory repository. The
producer and consumer register themselves to the directory
repository. The basic unit of monitoring data in GMA is
called an event. It supports a request/response model. GMA
comprises of three components: Producer, Consumer and
Directory services.

The component that makes the event data available is called a
producer, and a component that requests or accepts event data

is called a consumer. A directory service is used to publish
what event data is available and which producer to contact to
request it. The special feature of GMA is that data transfer
directly from producer to consumer[10].

Figure [1]- Grid Monitoring Architecture

3. GriFT

GriFT (Grid Fault Tolerance) is a client- server application

designed to monitor small networks from server end. It is
designed using Java programming language which makes it a
multiplatform monitoring technique. The technique has been
derived from the existing monitoring techniques Nagios and
Ganglia. The implementation includes the monitoring of all
the nodes in the network and analysing their detailed
performance for fault tolerance. GriFT technique monitors
each and every connected node and pushes the detailed

information of it to the Server System. Based on this
information we could easily find the node where the fault
exists all the nodes in the network and analysing their detailed
performance for fault tolerance. .

www.ijcait.com International Journal of Computer Applications & Information Technology
 Vol. I, Issue II, September 2012 (ISSN: 2278-7720)

P a g e | 87

Comparison of GriFT with Nagios and Ganglia monitoring
techniques[11]:

Table 1- comparison of GriFT with Nagios

and Ganglia

4. PROPOSED METHODOLOGY

Following is the proposed methodology that we adopted to
develop the GriFT monitoring technique:

1. Arranged a laboratory setup in the campus that
creates a dynamic environment.

2. Find a monitoring technique that goes well to
monitor faults in the environment. For this, we
proposed a new technique for the setup.

3. Next we developed the technique using Java
language and corresponding API’s.

4. Technique is implemented on the setup.
5. The results are analysed whether it goes well with

our requirements.

5. IMPLEMENTATION

Grid Fault Tolerant (GriFT) is a system designed to monitor
the small network systems from the Server End. The
architecture constitutes of two different parts and is based on

the Client to initialize the communication:

 Server End Application (GriFT Server)

 Client End Application (GriFT)

 GriFT Server- GriFT server implements the server
architecture and is installed on server machine. It fetches the

complete detailed information from all the working client
nodes involved and can be viewed graphically. Working of
three parameters has been monitored here- CPU Usage,
Memory usage and Processes running. A threshold value (T)
is assigned to every parameter (CPU usage, Memory usage
and Processes) [12]. If the performance (P) is below the
threshold value it will show OK state(green colour in pie
chart) , if it goes above soft threshold (Ts) value then it will

show the Warning state (yellow colour in pie chart) and if

goes above hard threshold (Tmax) value, then a critical
situation (orange colour in pie chart) will arise. i.e

Warning/Soft threshold value (Ts) = 85 (Processes)
Warning/Soft threshold value (Ts) = 60 (CPU and Memory)
Critical/Hard threshold value (Tmax) = 80 (CPU and
Memory)

Critical/Hard threshold value (Tmax) = 95 (Processes)

 P > Ts = Warning
 P > Tmax = Critical

 P < Ts = Ok
Different classes have been maintained to push information
from the clients, to show particular instance of the node or to
save the log files generated, to show defective nodes present
on the network and to present graphical view. GriFTEngine is

our main class where in a JFrame GriFT Server is displayed
with drop-down JMenus:Monitor Panel: it is used to either
start or stop the server.

Figure [2]- Start-Stop Frame

GriFT system in order to monitor over the network systems
gets the complete information of :

System Info- This module of the GriFT System give the
detailed information of the Hardware constituting the client
node.

 Figure [3]- System info View

CPU Info: This module of the GriFT System gives the
detailed information of the CPU of the node along with the
total idle time, I/O wait time, service request time, etc.

Figure [4]- CPU info View

www.ijcait.com International Journal of Computer Applications & Information Technology
 Vol. I, Issue II, September 2012 (ISSN: 2278-7720)

P a g e | 88

Memory Info View- This module of the GriFT System gives
the detailed information of the Memory available with total
free memory, used memory, Random Access memory.

Figure [5]- Memory Info view

File System Info: File System Info module gives the detailed
information about the available File System and the no. of
drives available.

 Figure [6] -File system info

Resource Limit Info: Resource Limit Info gives the complete
information of the available Resources

Figure [7]- Resource limit info view

Services Info: Services Info part of the module gives the
detailed information about the services along with the state of
the service at the client node

 Figure [8]- Services Detail View

Process Info- Process Info gives the detailed view of the
running processes at an instance and memory used.

 Figure [9] Processes running

Network Info: Network Info gives the detailed view of the
active connection along with the protocols being used. It also

gives the port no. on which the connections are made.

Figure [10] Network info View

With this specific information we can see the detailed
information of the particular client.

Grid Analyzer: this drop-down displays the detail view of all
the nodes and on further clicking the particular node it

www.ijcait.com International Journal of Computer Applications & Information Technology
 Vol. I, Issue II, September 2012 (ISSN: 2278-7720)

P a g e | 89

represents the whole information about the node like system
information, resource limit information, processes, network
information, filesystem information and CPU information.
User can also explode history of the respective node where the
log files are displayed from the time it is started.

Figure [11]- Grid Analyzer

Grid Status: this JMenu displays the latest status along with
the last time checked.

 Figure [12]- Grid Status

Grid Graphs: the Grid Graphs gives the graphical
representation of the overall network in the form of Pie-chart
along with its status. And a line chart view is used to show the
status of the specific node for its Memory and CPU usage at
x-axis and time at y-axis.

Figure [13]- Pie chart view

Figure [14]- Line chart View

GriFT Client- GriFT client is a client side application which

is required to be installed on every client node to be
monitored. It pushes the detailed configurational information
from client and passes it to the server by heart-beating after
particular time span. Heart-beating is the process of
continuously sending heart-beats/ signals to the demanding
destination. Each heart-beat contains a time stamp
representing the start of the instance.

Various classes have been designed for client application to

fetch information regarding operating system, network status,
processes and services running and system profiler.

Results

In order for a monitoring technique to be widely used, it must
be performed on a local area or splitting the system into small
units, so that it can scale well. The performance analysis of
the GriFt monitoring technique is done at the laboratory setup
arranged in our department over a network of Eight nodes (it

can be extended to 100 as defined in the system by the
concept of serialization in which we can create batches of
seven-seven nodes and send their report to the corresponding
server, we could analyze their performance by making them to
push over the network to the common centralized authority).

The computers on the network were almost of the
same configuration but are installed with different software’s
and while checking their performance different applications

are made to run on client machines.

The performance of every node is analysed, it can be extended
to 100 nodes as defined in our system. However in order to
increase the number of nodes we can change the defined
threshold value of the number of systems connected in
ServerSocket().

In order to cater the issue of congestion we can change the
value of ServerSocket .setsoTimeout(). The timeout values
can be defined similar for a batch of nodes, so the information

pushed at a particular time frame for the number of nodes will
be equivalent to the number of nodes in that particular batch
of the client system.

The performance is analysed after installing server application
over server machine and client application over the connected
nodes. The snap shots were taken after 5 seconds of time
stamp and the following status was found:

www.ijcait.com International Journal of Computer Applications & Information Technology
 Vol. I, Issue II, September 2012 (ISSN: 2278-7720)

P a g e | 90

Fig[15]- Node view

In this figure we can see two nodes are showing warning state.
We can check the location of their fault by clicking at the
particular node

 Figure[16]- Nodes Detail View

With this figure we have analysed that- in node 192.168.53.19
the CPU usage is going above our threshold value and
remaining fields are working below the threshold value. And
in node uiet-pc memory usage is above the threshold value
and the processes running are also at critical level. With this
information we analysed that both the nodes require attention

at specified areas.

The Overall Network status can be viewed in Pie-chart

Figure[17]- Overall grid Status

Now, we know the individual status of each node. We could
visit each node to get the detailed view and the history of each
node. Thus we will click on CPU usage in Pie-chart view
which will give us the status of the CPU percentage usage and
Memory percentage usage at the last time stamp instance
when the dataset was heartbeat by the individual node to the

server system. Since we may like to know the history of the
node and how over the time the node has responded to the
load. Thus, we click on the particular IP address or name of
the node of our concern.

Figure [18]- Line chart view of Node Ferocious

Figure [19]- Line chart view of node uiet-PC

In this way we analysed all the eight nodes and compared
their performance graphs with the task manger, and we got the
same results of both the applications.

6. CONCLUSION

Based upon our study of fault tolerance and monitoring
techniques in grid computing, we developed a technique
called GriFT(Grid Fault tolerance) for monitoring small
networks. We used Hyperic Sigar API in order to monitor
data which includes system information, network information,
and much more. It is used to perform hardware level
programming as Java does not have flexibility to go directly

to hardware level programming. Since, we have used Java
programming language which makes our application a
platform independent application. GriFT inspite of the
platform on which it run fetches information from all the
connected nodes. GriFT technique monitors each and every
connected node and pushes the detailed information of it to

www.ijcait.com International Journal of Computer Applications & Information Technology
 Vol. I, Issue II, September 2012 (ISSN: 2278-7720)

P a g e | 91

the Server System. Based on this information we could easily
find the node where the fault exists.

The results present the graphical representation of the status
of all the nodes at particular instance of time and store the
information in system log files giving the detailed information
about every node involved. The information retrieved here is

CPU usage, Memory usage and the number of processes
running. A threshold value is assigned to each parameter
beyond which it will warn the administrator about its
condition. And it is up to the administrator to rectify the
situation.

It can be concluded as the monitoring technique used by the
administrator for the performance analysis of a network.
Administrator observing can check the overall performance of

the network and also can observe the status of the specific
node. The GriFT monitoring technique can be used:

 During the time of online examination for

performance analysis of the systems in the campus
where compromising with faults is of no chance.

 In Network System wherein the performance of the

overall system matters and it does not matter
wherein the service request was fulfilled.

 For designing Self Healing Systems where in after

finding the defective node from GriFT the system
could go in for Self Healing.

 Asymmetric Load Sharing, hence the unutilized

systems could be given high ratio of work rather
than to the optimum and over utilized systems,
increasing the level of performance.

 For load balancing to divide data flow to different

network nodes so increase the service time.

 Continuous monitoring can help us find the nodes

which have stopped responding and hence we may
stop sending the load or network traffic, and once it
becomes online we may start sending the load or
traffic to the node.

 Storing the information for future use in problem

diagnosis.

Future Scope

The research work can be extended in many directions:

 The current version only works over the
LAN ; we can extend it to a wide area for
systems outside the Local Area network,

and at remote Locations or to a Grid.

 In this we have only studied about

monitoring, we can take it to next level by
adding functionality of recovering from
the failure.

 Our implementation is manual. There

must be some provision that whenever we
client login it will automatically start
working.

 Addition can be done in kind of alert; it

can alert the client by e-mail or sms.

 In order to service the remote clients

rather than going personally to the system
we could service the system using the
help of Remote system sharing or using
tools like VNC Server, etc.

7. REFERENCE

1.) Martin, N. H. (September, 24, 2004). “Grid Computing:

Harnessing Underutilized Resources”. UNCW
Department of Chemistry & Biochemistry Seminar.

2.) R. Buyya, S. Venugopal. (2005). “A Gentle Introduction

to Grid Computing and Technologies”. CSI
Communications , 9-19.

3.) J.C Durand (November 8,2004). “Grid Computing: A

Conceptual and Practical Study”, University of Lusanne.

4.) Inderpreet Chopra. “Fault tolerance in computational

Grids”, MS Thesis Thappar University.

5.) Paul Townend and Jei Xu(2003). “Fault Tolerance

within a Grid Environment”, Proceedings of AHM 2003.

6.) Yuuki Horita, Kenjiro Taura, Takashi Chikayama(2005).

“A Scalable and Efficient Self-Organizing Failure
Detector for Grid Applications”, 6th IEEE/ACM
International Workshop on Grid Computing.

7.) Retrieved July 2012, from http://

xml.csie.ntnu.edu.tw/course/ftol/10172001.doc

8.) Dan Gunter, Brian L. Tierney, Craig E. Tull, Vibha

Virmani(June 16, 2003) “On-Demand Grid Application
Tuning and Debugging with the NetLogger Activation
Service”.

9.) Serafeim Zanikolas, Rizos Sakellariou(July 21, 2005).

“A taxonomy of grid monitoring systems”, Future
Generation Computer Systems pp163–188.

10.) B. Tierney, R. Aydt, D. Gunter, W. Smith, M. Swany,

V. Taylor, R. Wolski(March 2000). “A Grid Monitoring
Architecture”, Global Grid Form.

11.) Wikipedia.org(July 2012). “Comparison of Network

Monitoring systems ”.
12.) M. Bubak, T. Szepieniec, M. Radecki(2003). “A

Proposal of Application Failure Detection and Recovery
in the Grid”, Cracow Grid Workshop.

13.) Matthew L. Messie, Brent N. Chun, David E.

Culler(June 2004). “The Ganglia Distributed Monitoring
System: Design, Implementation and Experience”.
Elsevier Open Access, www.Science Direct.com.

14.) Amit Jain and R.K. Shyamasundar(2004). “Failure

Detection and Membership Management in Grid
Environments”, Fifth IEEE/ACM International
Workshop on Grid Computing pp 44-52.

15.) CDAC Experts (August, 2004). “An overview of grid

computing workshop”.
16.) Manjula K A, Karthikeyan P (2010). “Grid Computing-

A tool for enhancing the computing power”, Indian
Journal of Computer Science and Engineering.

