Use of Nature-inspired Computing Techniques in Real World Applications (2010-2019) A Brief Review

Kiran Kumari, Prabhjot Kaur

KG College of Technology, India.

Abstract:

Nature-inspired computing techniques are the emerging computing techniques that have been used in a wide sphere of applications. The study presents a brief review of some of the major applications of these techniques. This study is restricted to the manuscripts which were published during 2010-2019 only. It is not possible to cover a large number of applications in one single brief study. Therefore, here, four different types of applications such as disease diagnosis, query optimization, sentiment analysis and stock data mining have been only considered.

Keywords: Nature-inspired computing, disease diagnosis, query optimization, sentiment analysis, stock data mining.

1. Introduction

As stated earlier, Nature-inspired computing techniques are the emerging computing techniques that have been used in a wide sphere of applications. It has been successfully used to solve different application area like disease diagnosis, query optimization, sentiment analysis, stock prediction, agriculture applications, task scheduling etc. in this manuscript, the brief review of use of NIC techniques related to four major applications area viz. disease diagnosis, stock prediction, sentiment analysis and query optimization has been taken.

2. Review results

Table 1 briefly depicted the use of NIC in the four major (disease diagnosis, stock prediction, sentiment analysis and query optimization) applications areas.

S.No.	Authors and Year	Application	Techniques used	Concluding Remarks
1.	Youness Khourdifi and	Heart	Particle swarm	A PA-KNN (fusion of PSO,
	Mohamed Bahaj, 2019		optimization (PSO),	ACO and KNN) method was
	[1]		Ant colony	proposed for the effective
			optimization (ACO),	diagnosis of heart disease.
			K-NN	
2.	Gehad Ismail Sayed et	Alzheimer's disease	Moth flame	An automated system for the
	al., 2017[2]	(AD)	optimization	diagnosis of AD was proposed
				using a dataset of 20 patients.
3.	Harikumar Rajaguru	Epilepsy	Artificial Bee	An excellent rate of accuracy
	and Sunil Kumar		Colony and particle	was achieved in the diagnosis
	Prabhakar, 2017[3]		swarm optimization	of epilepsy using hybridization
				of ABC and PSO.
4.	S. Anto, S.	Hepatitis Diagnosis	SVM, GA,	A CDSS system was proposed
	Chandramathi,2015[4]		Simulated	for the diagnosis of hepatitis in
			Annealing	

				patients using a fusion of SVM SA and GA classifiers
5.	Margarita-Arimatea Díaz Cortés et al., 2018[5]	Breast Cancer	Dragonfly Algorithm	A novel optimization method, dragonfly method was proposed for the effective and reliable results in the diagnosis of breast cancer using thermography images.
6.	Gadekallu Thippa Reddy and Neelu Khare., 2017 [6]	Diabetes	Firefly Algorithm (FA), BAT Algorithm	An optimization algorithm FFBAT-ANN was proposed for diabetes classification
7.	Deepak Gupta et al., 2018 [7]	Parkinson's Disorder	Crow Search Algorithm (CSA)	An optimized version of CSA was proposed for finding out the optimal set of features for the early prediction of PD.
8.	Nguyen Cong Long et al., 2015[8]	Heart Disease	Firefly Algorithm	The proposed method i.e. FA found to better in the diagnosis of heart disease as compared to traditional methods (SVM, ANN, and Naïve Bayes)
9.	Shalini Gambhir et al., 2017[9]	dengue disease	PSO, ANN	A hybridization of PSO and ANN was used for early prediction of dengue disorder on a dataset of 110 patients.
10.	Prerna Sharma et al.,2018 [10]	Parkinson's Disorder	Grey wolf optimization (GWO)	A modified GWO (MGWO)algorithm was proposed for feature selection. The performance of MGWO was measured using handwriting and voice datasets.
11.	Anuradha et al., 2018[11]	Diabetes	ACO	A novel fuzzy-rule miner algorithm (ANT_ FDCSM) derived from the ACO technique for the early detection of diabetes was proposed.
12.	Ming Zhang et al.,2017[12]	Depression	PSO, SVM	A hybridization of PSO and SVM was proposed for the diagnosis of depression in humans.
13.	Gorla, N., Song S. K. (2010). [13]	Query optimization	Genetic Algorithm	Authors have provided the GA based query optimizer for OLTP queries.
14.	Kumar, Akshi, and Renu Khorwal 2017 [14]	Sentiment Analysis	Firefly algorithm	A firefly algorithm has been employed to select optimal features for solving the sentiment analysis problem.
15.	Sharma, Manik, et al (2013) [15]	Query optimization	Restricted Genetic Algorithm	A distributed query optimizer using restricted genetic approach has been proposed.

16.	Sharma, Manik et al.	Stock	Traditional Data	Supervised learning
	(2018) [16]		Mining	techniques were used to
				solve the stock prediction
17.	Kaur, Prableen, and	Disease diagnosis	NIC Techniques	An extensive review of
	Manik Sharma (2019)	Discuse diagnosis	Trie Teeninques	different psychological
	[17]			disorders mined using
				differently supervised and
18	Kumar T V at al	Quary	URMO	NIC has been provided.
10.	(2013) [18]	optimization	IIDNO.	designed using HBMO was
	() []	- F		proposed.
19.	Wagh, A., & Nemade,	Query	Ant colony	
• •	V. (2017). [19]	optimization	optimization	
20.	Sharma, Manık et al.	Query	Nature inspired	An extensive review on
	(2019) [20]	opunnization	techniques	efficient query optimizer
			teeninques	has been presented.
21.	Gautam, Ritu et al.	Disease diagnosis	Insect based	A review on the use of
	(2019) [21]		computing	different insect-based
				in the diagnosis of diabetes
				and cancer has been
				depicted.
22.	Sharma, M et al.	CDSS query	hybrid Firefly and	A hybrid DSS query
	(2018) [22]	optimization	controlled GA	optimizer designed using
				Firefly and genetic
				algorithm.
23.	Sharma, M et al.	Disease diagnosis	Data mining and	An advanced conceptual
	(2017) [23]		NIC	diagnostic healthcare
				cardiovascular disorders has
				been presented.
24.	Sharma, M., G.	Disease diagnosis	Nature-inspired	In this manuscript, authors
	Singh, and R. Singh		Techniques	have provided a stark
	[24]			lifestyle based diseases
				among human beings.
25.	Kaur, Prableen, and	Fatal human	Nature-inspired	This paper provides a
	Manik Sharma (2017)	diseases	Techniques	review on using NIC for
	[25]			diagnosis of fatal human
26	Sharma, Manik et al.	Sentiment	Genetic algorithm	A sentiment analyzer based
	(2019) [26]	Analysis		upon GA has
27.	Sharma, Samriti et al.	Disease diagnosis,	NIC	In this manuscript, the
	(2019) [27]			author has presented an
				of various classification and
				NIC computing techniques

				for solving the variety of
				areas
28.	Sharma, Samriti et al.	Stock	Nature inspired	Authors have presented an
	(2019) [28]		computing	extensive review of the use
	. ,		techniques	of NIC in stock data mining.
29.	<u>Ahmad</u> et al. (2019)	Sentiment	Ant colony	ACO-KNN algorithm
	[29]	analysis	optimization	was proposed for text
				feature selection method.
				Wrapper method with
				ACO was used for feature
				selection and KNN was
				used to select the
				optimum features.
30.	Tuba et al. (2019)	Sentiment	Intelligent Water	Best features are selected
	[30]	analysis	Drops	using IWD technique for
21		a	XX 71 1	sentiment analysis.
31.	Mohammad et al.	Sentiment	Whale	An algorithm was
	(2019) [31]	analysis	Optimization	proposed using wOA and
			Algorithm	S V M in selection features
22	Abdulariz at al [22]	Continont	Cat	CSO L STMNN
52.	Addulaziz et al. [52]	sentiment	Cat swarm	CSO-LST MINN
		allarysis	opunnzation	for sentiment analysis
33	Kumar et al (2017)	Sentiment	Firefly algorithm	Firefly algorithm was
	[33]	analysis	i neny argonani	used to selection the
	[55]	undi yono		features and SVM was
				used as a classifier.
34.	Zhang et al. (2019)	Stock price	Firefly algorithm	Support vector regression
	[34]	forecasting	, ,	with FA was used to
		e		forecast the stock price.
35.	Sedighi et al. (2019)	Stock price	Artificial Bee	ABC with SVM and
	[35]	forecasting	Colony	ANFIS was used to
				forecast the accurate
				stock price.
36.	Asadi et al. (2019)	Stock price	Genetic	GA with RIPPER method
	[36]	forecasting	algorithm	was used for stock market
				prediction.
37.	Iqbal et al. (2019)	Sentiment	Genetic	GA with PCA was used
	[37]	analysis	algorithm	for feature selection in
20		a	a w i	sentiment analysis.
38.	Uma et al. (2019)	Sentiment	Grey Wolf	The author proposed a
	[38]	analysis	Optimization	sentiment analysis
				method using GWO
				which is used for social

					web big data sentiment
					trend analysis problem.
39.	Sharma M., Samriti,	Healthcare	IoT,	Energy	Finally, the need and
	Singh G. (2019) [39]	Framework	Efficient	Nature	design of energy-efficient
			inspired		IoT-based healthcare
			computing		system for psychological
			techniques		and neurological
					disordered patients have
					been proposed.

Conclusion

In this paper thirty nine different articles related to the use of nature inspired computing techniques in four different majore areas have been studied. Nature-inspired computing techniques are dominant computing techniques that have been inspired by the natural behaviour of different aspects of nature. In the last ten years, these techniques have been frequently used to solve the problems related to query optimization, disease diagnosis, query sentiment analysis and stock data mining. The paper presented a brief review of some of the major manuscript that has been published in the last ten years.

References

- Khourdifi, Y., & Bahaj, M. (2018, November). K-Nearest Neighbour Model Optimized by Particle Swarm Optimization and Ant Colony Optimization for Heart Disease Classification. In International Conference on Big Data and Smart Digital Environment (pp. 215-224). Springer, Cham.
- Sayed, G. I., Hassanien, A. E., Nassef, T. M., & Pan, J. S. (2016, November). Alzheimer's disease diagnosis based on moth flame optimization. In International Conference on Genetic and Evolutionary Computing (pp. 298-305). Springer, Cham.
- Rajaguru, H., & Prabhakar, S. K. (2017, July). Bayesian linear discriminant analysis with hybrid ABC-PSO classifier for classifying epilepsy from EEG signals. In 2017 International Conference on Computing Methodologies and Communication (ICCMC) (pp. 977-980). IEEE.
- 4. Anto, S., & Chandramathi, S. (2015). An expert system based on SVM and hybrid GA-SA optimization for hepatitis diagnosis. International Journal of Computer Engineering In Research Trends, 2(7), 437-443.
- Díaz-Cortés, M. A., Ortega-Sánchez, N., Hinojosa, S., Oliva, D., Cuevas, E., Rojas, R., & Demin, A. (2018). A multi-level thresholding method for breast thermograms analysis using Dragonfly algorithm. Infrared Physics & Technology, 93, 346-361.
- Reddy, G. T., & Khare, N. (2017). Hybrid Firefly-Bat Optimized Fuzzy Artificial Neural Network Based Classifier for Diabetes Diagnosis. International Journal of Intelligent Engineering and Systems, 10(4), 18-27.
- Gupta, D., Sundaram, S., Khanna, A., Hassanien, A. E., & De Albuquerque, V. H. C. (2018). Improved diagnosis of Parkinson's disease using optimized crow search algorithm. Computers & Electrical Engineering, 68, 412-424.
- 8. Long, N. C., Meesad, P., & Unger, H. (2015). A highly accurate firefly based algorithm for heart disease prediction. Expert Systems with Applications, 42(21), 8221-8231.
- 9. Gambhir, S., Malik, S. K., & Kumar, Y. (2017). PSO-ANN based diagnostic model for the early detection of dengue disease. New Horizons in Translational Medicine, 4(1-4), 1-8.

- 10. Sharma, P., Sundaram, S., Sharma, M., Sharma, A., & Gupta, D. (2019). Diagnosis of Parkinson's disease using modified grey wolf optimization. Cognitive Systems Research, 54, 100-115
- 11. Anuradha, Akansha Singh., Gaurav Gupta.: ANT_FDCSM: A novel fuzzy rule miner derived from ant colony meta-heuristic for diagnosis of diabetic patients. Journal of Intelligent and Fuzzy Systems 36(2),1-14 (2018)
- Zhang, M., Lu, S., Li, M., Zhou, J., Lu, X., Xu, J., ... & Zhong, N. (2017). SVM classification model in depression recognition based on mutation PSO parameter optimization. In BIO Web of Conferences (Vol. 8, p. 01037). EDP Sciences.
- 13. Gorla, N., Song S. K. (2010). Sub-query allocation in DDB using GA. Journal of Computer Sc. and Tech. 10, 31-37.
- 14. Kumar, Akshi, and Renu Khorwal. "Firefly algorithm for feature selection in sentiment analysis." Computational Intelligence in Data Mining. Springer, Singapore, 2017. 693-703.
- 15. Sharma, Manik, et al. "Design and comparative analysis of DSS queries in a distributed environment." 2013 International Computer Science and Engineering Conference (ICSEC). IEEE, 2013.
- 16. Sharma, Manik, Samriti Sharma, and Gurvinder Singh. "Performance Analysis of Statistical and Supervised Learning Techniques in Stock Data Mining." Data 3.4 (2018): 54.
- Kaur, Prableen, and Manik Sharma. "Diagnosis of Human Psychological Disorders using Supervised Learning and Nature-Inspired Computing Techniques: A Meta-Analysis. "Journal of medical systems 43.7 (2019): 204.
- Kumar, T. V., Arun, B., & Kumar, L. (2013). Distributed query plan generation using HBMO. In International Workshop on Multi-disciplinary Trends in Artificial Intelligence (pp. 293-304). Springer, Heidelberg, 293-304.
- 19. Wagh, A., & Nemade, V. (2017). Query Optimization using Modified Ant Colony Algorithm. International Journal of Computer Applications, 167(2). 29-33.
- 20. Sharma, Manik, Gurvinder Singh, and Rajinder Singh. "A review of different cost-based distributed query optimizers." Progress in Artificial Intelligence 8.1 (2019): 45-62.
- 21. Gautam, Ritu, Prableen Kaur, and Manik Sharma. "A comprehensive review on nature-inspired computing algorithms for the diagnosis of chronic disorders in human beings." Progress in Artificial Intelligence (2019): 1-24.
- 22. Sharma, M., G. Singh, and R. Singh. "Clinical decision support system query optimizer using hybrid Firefly and controlled Genetic Algorithm." Journal of King Saud University-Computer and Information Sciences (2018).
- 23. Sharma, Manik, Gurvinder Singh, and Rajinder Singh. "An Advanced Conceptual Diagnostic Healthcare Framework for Diabetes and Cardiovascular Disorders." arXiv preprint arXiv:1901.10530 (2019).
- 24. Sharma, M., G. Singh, and R. Singh. "Stark assessment of lifestyle based human disorders using data mining based learning techniques." IRBM 38.6 (2017): 305-324.
- 25. Kaur, Prableen, and Manik Sharma. "A Survey on Using Nature Inspired Computing for Fatal Disease Diagnosis."International Journal of Information System Modeling and Design (IJISMD) 8.2 (2017): 70-91.
- 26. Sharma, Manik, Gurvinder Singh, and Rajinder Singh. "Design of GA and Ontology based NLP Frameworks for Online Opinion Mining." Recent Patents on Engineering 13.2 (2019): 159-165.
- Sharma, Samriti, Gurvinder Singh, and Dhanpreet Singh. "Role and Performance of Different Traditional Classification and Nature-Inspired Computing Techniques in Major Research Areas." (2019).

- Sharma M., Samriti, Singh G. (2019) Need and Design of Smart and Secure Energy-Efficient IoT-Based Healthcare Framework. In: Mittal M., Tanwar S., Agarwal B., Goyal L. (eds) Energy Conservation for IoT Devices. Studies in Systems, Decision and Control, vol 206. Springer, Singapore
- 29. Ahmad, Siti Rohaidah, Bakar, Azuraliza Abu and Yaakub, Mohd Ridzwan. Ant colony optimization for text feature selection in sentiment analysis. Intelligent Data Analysis, vol. 23, no. 1, pp. 133-158, 2019.
- 30. Tuba Parlar, Esra Sarac. IWD Based Feature Selection Algorithm for Sentiment Analysis. Elektronika Ir Elektrotechnika 25(1), 2019.
- 31. Mohammad Tubishat, Mohammad A. M. Abushariah, Norisma Idris, Ibrahim Aljarah. Improved whale optimization algorithm for feature selection in Arabic sentiment analysis. Applied Intelligence Volume 49(5): 1688–1707.
- 32. Abdulaziz Alarifi, Amr Tolba, Zafer Al-Makhadmeh and Wael Said. A big data approach sentiment analysis using greedy feature selection with cat swarm optimization-based long short-term memory neural networks. The Journal of Supercomputing 1-16. doi.org/10.1007/s11227-018-2398-2.
- 33. Kumar A., Khorwal R. (2017) Firefly Algorithm for Feature Selection in Sentiment Analysis. In: Behera H., Mohapatra D. (eds) Computational Intelligence in Data Mining. Advances in Intelligent Systems and Computing, Springer, Singapore 556:693-703.
- 34. Jun Zhang, Yu-Fan Teng and Wei Chen. Support vector regression with modified firefly algorithm for stock price forecasting. Applied Intelligence 49(5): 1658–1674, 2019.
- 35. Mojtaba Sedighi, Hossein Jahangirnia, Mohsen Gharakhani and Saeed Farahani Fard. A Novel Hybrid Model for Stock Price Forecasting Based on Metaheuristics and Support Vector Machine. Data 4(2), 75, 2019.
- 36. ShahrokhAsadi, Evolutionary fuzzification of RIPPER for regression: a Case study of stock prediction. Neurocomputing 331, 121-137: 2019.
- 37. Farkhund Iqbal, Jahanzeb Maqbool Hashmi, Benjamin C. M. Fung, Rabia Batool et al. A Hybrid Framework for Sentiment Analysis Using Genetic Algorithm Based Feature Reduction. IEEE Access 7, 2019.
- K.K. Uma1 and Dr K. Meenakshisundaram. A Novel Optimizer Technique for Sentiment Polarity in Social Web Environment. International Journal of Applied Engineering Research. Volume 14 (1): 18-125, 2019.
- Sharma, Manik, and Gurvinder Singh. "Need and Design of Smart and Secure Energy-Efficient IoT-Based Healthcare Framework." Energy Conservation for IoT Devices. Springer, Singapore, 2019. 259-281